Automated Identification of Molecular Crystals’ Packing Motifs
Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have rem...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2020-12, Vol.60 (12), p.6147-6154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6154 |
---|---|
container_issue | 12 |
container_start_page | 6147 |
container_title | Journal of chemical information and modeling |
container_volume | 60 |
creator | Loveland, Donald Kailkhura, Bhavya Karande, Piyush Hiszpanski, Anna M Han, T. Yong-Jin |
description | Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have remained small and noisy due to intensive manual labeling processes and insufficient labeling schemes. The most prominent labeling algorithms calculate relative interplanar angles of nearest neighbor molecules to determine the packing motif of a molecular crystal, but this simple approach can fail when neighbors are naively sampled isotropically around the crystal structure. To remedy this issue, we propose an optimization algorithm, which rotates the molecular crystal structure to find representative molecules that inform the packing motif. We package this algorithm into an automated frameworkAutopackwhich both optimally rotates the crystal structure and labels the packing motif based on the appropriate neighboring molecules. In this work, we detail the Autopack framework and its performance, which shows improvements compared to previous state-of-the-art labeling methods, providing the first quantitative point of comparison for packing motif labeling algorithms. Furthermore, using Autopack (available at https://ipo.llnl.gov/technologies/software/autopack), we perform the first large-scale study of potential relationships between chemicals’ compositions and packing motifs, which shows that these relationships are more complex than previously hypothesized from studies that used only tens of polycyclic aromatic hydrocarbon molecules. Autopack’s capabilities help pose next steps for crystal engineering research focusing not only on a molecule’s adoption of a specific packing motif but also on new structure–property relationships. |
doi_str_mv | 10.1021/acs.jcim.0c01134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000608875100054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475526740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-8a667069cd53b5fa784f4fb0fac0fdd778f09e531461153102ba060dffbaebed3</originalsourceid><addsrcrecordid>eNqNkc1q3TAQhUVpaX7afVfFNJtAe29Hv7Z3DaZNAgnpooHshCxLjW5sKbVkQnZ9jb5enyS68b1ZBApdzcB8Z5gzB6F3GJYYCP6sdFyutBuWoAFjyl6gXcxZvagFXL3c9rwWO2gvxhUApbUgr9EOpYRxQsku-nI0pTCoZLritDM-Oeu0Si74ItjiPPRGT70ai2a8j0n18e_vP8V3pW-c_5mnmY5v0CubB-btpu6jy29ffzQni7OL49Pm6GyhGKVpUSkhShC17jhtuVVlxSyzLVilwXZdWVYWasMpZgLjXIC0CgR01rbKtKaj--jDvDfE5GTULhl9rYP3RieJK0xFVWfocIZux_BrMjHJwUVt-l55E6YoCROcMcCEZPTgGboK0-izhUyVnBNRMsgUzJQeQ4yjsfJ2dIMa7yUGuY5A5gjkOgK5iSBL3m8WT-1guifB9ucZ-DgDd6YNNjsxXpsnDCDbrqqS49zx9brq_-nGpcfwmjD5lKWfZunjjVt3_zz8AXyUspE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475526740</pqid></control><display><type>article</type><title>Automated Identification of Molecular Crystals’ Packing Motifs</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Loveland, Donald ; Kailkhura, Bhavya ; Karande, Piyush ; Hiszpanski, Anna M ; Han, T. Yong-Jin</creator><creatorcontrib>Loveland, Donald ; Kailkhura, Bhavya ; Karande, Piyush ; Hiszpanski, Anna M ; Han, T. Yong-Jin ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have remained small and noisy due to intensive manual labeling processes and insufficient labeling schemes. The most prominent labeling algorithms calculate relative interplanar angles of nearest neighbor molecules to determine the packing motif of a molecular crystal, but this simple approach can fail when neighbors are naively sampled isotropically around the crystal structure. To remedy this issue, we propose an optimization algorithm, which rotates the molecular crystal structure to find representative molecules that inform the packing motif. We package this algorithm into an automated frameworkAutopackwhich both optimally rotates the crystal structure and labels the packing motif based on the appropriate neighboring molecules. In this work, we detail the Autopack framework and its performance, which shows improvements compared to previous state-of-the-art labeling methods, providing the first quantitative point of comparison for packing motif labeling algorithms. Furthermore, using Autopack (available at https://ipo.llnl.gov/technologies/software/autopack), we perform the first large-scale study of potential relationships between chemicals’ compositions and packing motifs, which shows that these relationships are more complex than previously hypothesized from studies that used only tens of polycyclic aromatic hydrocarbon molecules. Autopack’s capabilities help pose next steps for crystal engineering research focusing not only on a molecule’s adoption of a specific packing motif but also on new structure–property relationships.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c01134</identifier><identifier>PMID: 33245232</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Algorithms ; Aromatic hydrocarbons ; Automation ; Chemical Information ; Chemistry ; Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Crystal structure ; crystals ; Engineering research ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Labeling ; Labels ; Life Sciences & Biomedicine ; Materials science ; molecular interactions ; Molecular structure ; molecules ; Optimization ; Pharmacology & Pharmacy ; Physical Sciences ; Science & Technology ; Technology</subject><ispartof>Journal of chemical information and modeling, 2020-12, Vol.60 (12), p.6147-6154</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 28, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608875100054</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a433t-8a667069cd53b5fa784f4fb0fac0fdd778f09e531461153102ba060dffbaebed3</citedby><cites>FETCH-LOGICAL-a433t-8a667069cd53b5fa784f4fb0fac0fdd778f09e531461153102ba060dffbaebed3</cites><orcidid>0000-0002-2705-3263 ; 0000-0002-3000-2782 ; 0000-0002-0327-1936 ; 0000000227053263 ; 0000000230002782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.0c01134$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.0c01134$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33245232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1813689$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Loveland, Donald</creatorcontrib><creatorcontrib>Kailkhura, Bhavya</creatorcontrib><creatorcontrib>Karande, Piyush</creatorcontrib><creatorcontrib>Hiszpanski, Anna M</creatorcontrib><creatorcontrib>Han, T. Yong-Jin</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Automated Identification of Molecular Crystals’ Packing Motifs</title><title>Journal of chemical information and modeling</title><addtitle>J CHEM INF MODEL</addtitle><addtitle>J. Chem. Inf. Model</addtitle><description>Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have remained small and noisy due to intensive manual labeling processes and insufficient labeling schemes. The most prominent labeling algorithms calculate relative interplanar angles of nearest neighbor molecules to determine the packing motif of a molecular crystal, but this simple approach can fail when neighbors are naively sampled isotropically around the crystal structure. To remedy this issue, we propose an optimization algorithm, which rotates the molecular crystal structure to find representative molecules that inform the packing motif. We package this algorithm into an automated frameworkAutopackwhich both optimally rotates the crystal structure and labels the packing motif based on the appropriate neighboring molecules. In this work, we detail the Autopack framework and its performance, which shows improvements compared to previous state-of-the-art labeling methods, providing the first quantitative point of comparison for packing motif labeling algorithms. Furthermore, using Autopack (available at https://ipo.llnl.gov/technologies/software/autopack), we perform the first large-scale study of potential relationships between chemicals’ compositions and packing motifs, which shows that these relationships are more complex than previously hypothesized from studies that used only tens of polycyclic aromatic hydrocarbon molecules. Autopack’s capabilities help pose next steps for crystal engineering research focusing not only on a molecule’s adoption of a specific packing motif but also on new structure–property relationships.</description><subject>Algorithms</subject><subject>Aromatic hydrocarbons</subject><subject>Automation</subject><subject>Chemical Information</subject><subject>Chemistry</subject><subject>Chemistry, Medicinal</subject><subject>Chemistry, Multidisciplinary</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Crystal structure</subject><subject>crystals</subject><subject>Engineering research</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Labeling</subject><subject>Labels</subject><subject>Life Sciences & Biomedicine</subject><subject>Materials science</subject><subject>molecular interactions</subject><subject>Molecular structure</subject><subject>molecules</subject><subject>Optimization</subject><subject>Pharmacology & Pharmacy</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1q3TAQhUVpaX7afVfFNJtAe29Hv7Z3DaZNAgnpooHshCxLjW5sKbVkQnZ9jb5enyS68b1ZBApdzcB8Z5gzB6F3GJYYCP6sdFyutBuWoAFjyl6gXcxZvagFXL3c9rwWO2gvxhUApbUgr9EOpYRxQsku-nI0pTCoZLritDM-Oeu0Si74ItjiPPRGT70ai2a8j0n18e_vP8V3pW-c_5mnmY5v0CubB-btpu6jy29ffzQni7OL49Pm6GyhGKVpUSkhShC17jhtuVVlxSyzLVilwXZdWVYWasMpZgLjXIC0CgR01rbKtKaj--jDvDfE5GTULhl9rYP3RieJK0xFVWfocIZux_BrMjHJwUVt-l55E6YoCROcMcCEZPTgGboK0-izhUyVnBNRMsgUzJQeQ4yjsfJ2dIMa7yUGuY5A5gjkOgK5iSBL3m8WT-1guifB9ucZ-DgDd6YNNjsxXpsnDCDbrqqS49zx9brq_-nGpcfwmjD5lKWfZunjjVt3_zz8AXyUspE</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Loveland, Donald</creator><creator>Kailkhura, Bhavya</creator><creator>Karande, Piyush</creator><creator>Hiszpanski, Anna M</creator><creator>Han, T. Yong-Jin</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2705-3263</orcidid><orcidid>https://orcid.org/0000-0002-3000-2782</orcidid><orcidid>https://orcid.org/0000-0002-0327-1936</orcidid><orcidid>https://orcid.org/0000000227053263</orcidid><orcidid>https://orcid.org/0000000230002782</orcidid></search><sort><creationdate>20201228</creationdate><title>Automated Identification of Molecular Crystals’ Packing Motifs</title><author>Loveland, Donald ; Kailkhura, Bhavya ; Karande, Piyush ; Hiszpanski, Anna M ; Han, T. Yong-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-8a667069cd53b5fa784f4fb0fac0fdd778f09e531461153102ba060dffbaebed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Aromatic hydrocarbons</topic><topic>Automation</topic><topic>Chemical Information</topic><topic>Chemistry</topic><topic>Chemistry, Medicinal</topic><topic>Chemistry, Multidisciplinary</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Crystal structure</topic><topic>crystals</topic><topic>Engineering research</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Labeling</topic><topic>Labels</topic><topic>Life Sciences & Biomedicine</topic><topic>Materials science</topic><topic>molecular interactions</topic><topic>Molecular structure</topic><topic>molecules</topic><topic>Optimization</topic><topic>Pharmacology & Pharmacy</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loveland, Donald</creatorcontrib><creatorcontrib>Kailkhura, Bhavya</creatorcontrib><creatorcontrib>Karande, Piyush</creatorcontrib><creatorcontrib>Hiszpanski, Anna M</creatorcontrib><creatorcontrib>Han, T. Yong-Jin</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loveland, Donald</au><au>Kailkhura, Bhavya</au><au>Karande, Piyush</au><au>Hiszpanski, Anna M</au><au>Han, T. Yong-Jin</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Identification of Molecular Crystals’ Packing Motifs</atitle><jtitle>Journal of chemical information and modeling</jtitle><stitle>J CHEM INF MODEL</stitle><addtitle>J. Chem. Inf. Model</addtitle><date>2020-12-28</date><risdate>2020</risdate><volume>60</volume><issue>12</issue><spage>6147</spage><epage>6154</epage><pages>6147-6154</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have remained small and noisy due to intensive manual labeling processes and insufficient labeling schemes. The most prominent labeling algorithms calculate relative interplanar angles of nearest neighbor molecules to determine the packing motif of a molecular crystal, but this simple approach can fail when neighbors are naively sampled isotropically around the crystal structure. To remedy this issue, we propose an optimization algorithm, which rotates the molecular crystal structure to find representative molecules that inform the packing motif. We package this algorithm into an automated frameworkAutopackwhich both optimally rotates the crystal structure and labels the packing motif based on the appropriate neighboring molecules. In this work, we detail the Autopack framework and its performance, which shows improvements compared to previous state-of-the-art labeling methods, providing the first quantitative point of comparison for packing motif labeling algorithms. Furthermore, using Autopack (available at https://ipo.llnl.gov/technologies/software/autopack), we perform the first large-scale study of potential relationships between chemicals’ compositions and packing motifs, which shows that these relationships are more complex than previously hypothesized from studies that used only tens of polycyclic aromatic hydrocarbon molecules. Autopack’s capabilities help pose next steps for crystal engineering research focusing not only on a molecule’s adoption of a specific packing motif but also on new structure–property relationships.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33245232</pmid><doi>10.1021/acs.jcim.0c01134</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2705-3263</orcidid><orcidid>https://orcid.org/0000-0002-3000-2782</orcidid><orcidid>https://orcid.org/0000-0002-0327-1936</orcidid><orcidid>https://orcid.org/0000000227053263</orcidid><orcidid>https://orcid.org/0000000230002782</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2020-12, Vol.60 (12), p.6147-6154 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_webofscience_primary_000608875100054 |
source | ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithms Aromatic hydrocarbons Automation Chemical Information Chemistry Chemistry, Medicinal Chemistry, Multidisciplinary Computer Science Computer Science, Information Systems Computer Science, Interdisciplinary Applications Crystal structure crystals Engineering research INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Labeling Labels Life Sciences & Biomedicine Materials science molecular interactions Molecular structure molecules Optimization Pharmacology & Pharmacy Physical Sciences Science & Technology Technology |
title | Automated Identification of Molecular Crystals’ Packing Motifs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Identification%20of%20Molecular%20Crystals%E2%80%99%20Packing%20Motifs&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Loveland,%20Donald&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-12-28&rft.volume=60&rft.issue=12&rft.spage=6147&rft.epage=6154&rft.pages=6147-6154&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c01134&rft_dat=%3Cproquest_webof%3E2475526740%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475526740&rft_id=info:pmid/33245232&rfr_iscdi=true |