Automated Identification of Molecular Crystals’ Packing Motifs

Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2020-12, Vol.60 (12), p.6147-6154
Hauptverfasser: Loveland, Donald, Kailkhura, Bhavya, Karande, Piyush, Hiszpanski, Anna M, Han, T. Yong-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6154
container_issue 12
container_start_page 6147
container_title Journal of chemical information and modeling
container_volume 60
creator Loveland, Donald
Kailkhura, Bhavya
Karande, Piyush
Hiszpanski, Anna M
Han, T. Yong-Jin
description Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have remained small and noisy due to intensive manual labeling processes and insufficient labeling schemes. The most prominent labeling algorithms calculate relative interplanar angles of nearest neighbor molecules to determine the packing motif of a molecular crystal, but this simple approach can fail when neighbors are naively sampled isotropically around the crystal structure. To remedy this issue, we propose an optimization algorithm, which rotates the molecular crystal structure to find representative molecules that inform the packing motif. We package this algorithm into an automated frameworkAutopackwhich both optimally rotates the crystal structure and labels the packing motif based on the appropriate neighboring molecules. In this work, we detail the Autopack framework and its performance, which shows improvements compared to previous state-of-the-art labeling methods, providing the first quantitative point of comparison for packing motif labeling algorithms. Furthermore, using Autopack (available at https://ipo.llnl.gov/technologies/software/autopack), we perform the first large-scale study of potential relationships between chemicals’ compositions and packing motifs, which shows that these relationships are more complex than previously hypothesized from studies that used only tens of polycyclic aromatic hydrocarbon molecules. Autopack’s capabilities help pose next steps for crystal engineering research focusing not only on a molecule’s adoption of a specific packing motif but also on new structure–property relationships.
doi_str_mv 10.1021/acs.jcim.0c01134
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000608875100054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475526740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-8a667069cd53b5fa784f4fb0fac0fdd778f09e531461153102ba060dffbaebed3</originalsourceid><addsrcrecordid>eNqNkc1q3TAQhUVpaX7afVfFNJtAe29Hv7Z3DaZNAgnpooHshCxLjW5sKbVkQnZ9jb5enyS68b1ZBApdzcB8Z5gzB6F3GJYYCP6sdFyutBuWoAFjyl6gXcxZvagFXL3c9rwWO2gvxhUApbUgr9EOpYRxQsku-nI0pTCoZLritDM-Oeu0Si74ItjiPPRGT70ai2a8j0n18e_vP8V3pW-c_5mnmY5v0CubB-btpu6jy29ffzQni7OL49Pm6GyhGKVpUSkhShC17jhtuVVlxSyzLVilwXZdWVYWasMpZgLjXIC0CgR01rbKtKaj--jDvDfE5GTULhl9rYP3RieJK0xFVWfocIZux_BrMjHJwUVt-l55E6YoCROcMcCEZPTgGboK0-izhUyVnBNRMsgUzJQeQ4yjsfJ2dIMa7yUGuY5A5gjkOgK5iSBL3m8WT-1guifB9ucZ-DgDd6YNNjsxXpsnDCDbrqqS49zx9brq_-nGpcfwmjD5lKWfZunjjVt3_zz8AXyUspE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475526740</pqid></control><display><type>article</type><title>Automated Identification of Molecular Crystals’ Packing Motifs</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Loveland, Donald ; Kailkhura, Bhavya ; Karande, Piyush ; Hiszpanski, Anna M ; Han, T. Yong-Jin</creator><creatorcontrib>Loveland, Donald ; Kailkhura, Bhavya ; Karande, Piyush ; Hiszpanski, Anna M ; Han, T. Yong-Jin ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have remained small and noisy due to intensive manual labeling processes and insufficient labeling schemes. The most prominent labeling algorithms calculate relative interplanar angles of nearest neighbor molecules to determine the packing motif of a molecular crystal, but this simple approach can fail when neighbors are naively sampled isotropically around the crystal structure. To remedy this issue, we propose an optimization algorithm, which rotates the molecular crystal structure to find representative molecules that inform the packing motif. We package this algorithm into an automated frameworkAutopackwhich both optimally rotates the crystal structure and labels the packing motif based on the appropriate neighboring molecules. In this work, we detail the Autopack framework and its performance, which shows improvements compared to previous state-of-the-art labeling methods, providing the first quantitative point of comparison for packing motif labeling algorithms. Furthermore, using Autopack (available at https://ipo.llnl.gov/technologies/software/autopack), we perform the first large-scale study of potential relationships between chemicals’ compositions and packing motifs, which shows that these relationships are more complex than previously hypothesized from studies that used only tens of polycyclic aromatic hydrocarbon molecules. Autopack’s capabilities help pose next steps for crystal engineering research focusing not only on a molecule’s adoption of a specific packing motif but also on new structure–property relationships.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c01134</identifier><identifier>PMID: 33245232</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Algorithms ; Aromatic hydrocarbons ; Automation ; Chemical Information ; Chemistry ; Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Crystal structure ; crystals ; Engineering research ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Labeling ; Labels ; Life Sciences &amp; Biomedicine ; Materials science ; molecular interactions ; Molecular structure ; molecules ; Optimization ; Pharmacology &amp; Pharmacy ; Physical Sciences ; Science &amp; Technology ; Technology</subject><ispartof>Journal of chemical information and modeling, 2020-12, Vol.60 (12), p.6147-6154</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 28, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608875100054</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a433t-8a667069cd53b5fa784f4fb0fac0fdd778f09e531461153102ba060dffbaebed3</citedby><cites>FETCH-LOGICAL-a433t-8a667069cd53b5fa784f4fb0fac0fdd778f09e531461153102ba060dffbaebed3</cites><orcidid>0000-0002-2705-3263 ; 0000-0002-3000-2782 ; 0000-0002-0327-1936 ; 0000000227053263 ; 0000000230002782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.0c01134$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.0c01134$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33245232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1813689$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Loveland, Donald</creatorcontrib><creatorcontrib>Kailkhura, Bhavya</creatorcontrib><creatorcontrib>Karande, Piyush</creatorcontrib><creatorcontrib>Hiszpanski, Anna M</creatorcontrib><creatorcontrib>Han, T. Yong-Jin</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Automated Identification of Molecular Crystals’ Packing Motifs</title><title>Journal of chemical information and modeling</title><addtitle>J CHEM INF MODEL</addtitle><addtitle>J. Chem. Inf. Model</addtitle><description>Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have remained small and noisy due to intensive manual labeling processes and insufficient labeling schemes. The most prominent labeling algorithms calculate relative interplanar angles of nearest neighbor molecules to determine the packing motif of a molecular crystal, but this simple approach can fail when neighbors are naively sampled isotropically around the crystal structure. To remedy this issue, we propose an optimization algorithm, which rotates the molecular crystal structure to find representative molecules that inform the packing motif. We package this algorithm into an automated frameworkAutopackwhich both optimally rotates the crystal structure and labels the packing motif based on the appropriate neighboring molecules. In this work, we detail the Autopack framework and its performance, which shows improvements compared to previous state-of-the-art labeling methods, providing the first quantitative point of comparison for packing motif labeling algorithms. Furthermore, using Autopack (available at https://ipo.llnl.gov/technologies/software/autopack), we perform the first large-scale study of potential relationships between chemicals’ compositions and packing motifs, which shows that these relationships are more complex than previously hypothesized from studies that used only tens of polycyclic aromatic hydrocarbon molecules. Autopack’s capabilities help pose next steps for crystal engineering research focusing not only on a molecule’s adoption of a specific packing motif but also on new structure–property relationships.</description><subject>Algorithms</subject><subject>Aromatic hydrocarbons</subject><subject>Automation</subject><subject>Chemical Information</subject><subject>Chemistry</subject><subject>Chemistry, Medicinal</subject><subject>Chemistry, Multidisciplinary</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computer Science, Interdisciplinary Applications</subject><subject>Crystal structure</subject><subject>crystals</subject><subject>Engineering research</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Labeling</subject><subject>Labels</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Materials science</subject><subject>molecular interactions</subject><subject>Molecular structure</subject><subject>molecules</subject><subject>Optimization</subject><subject>Pharmacology &amp; Pharmacy</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1q3TAQhUVpaX7afVfFNJtAe29Hv7Z3DaZNAgnpooHshCxLjW5sKbVkQnZ9jb5enyS68b1ZBApdzcB8Z5gzB6F3GJYYCP6sdFyutBuWoAFjyl6gXcxZvagFXL3c9rwWO2gvxhUApbUgr9EOpYRxQsku-nI0pTCoZLritDM-Oeu0Si74ItjiPPRGT70ai2a8j0n18e_vP8V3pW-c_5mnmY5v0CubB-btpu6jy29ffzQni7OL49Pm6GyhGKVpUSkhShC17jhtuVVlxSyzLVilwXZdWVYWasMpZgLjXIC0CgR01rbKtKaj--jDvDfE5GTULhl9rYP3RieJK0xFVWfocIZux_BrMjHJwUVt-l55E6YoCROcMcCEZPTgGboK0-izhUyVnBNRMsgUzJQeQ4yjsfJ2dIMa7yUGuY5A5gjkOgK5iSBL3m8WT-1guifB9ucZ-DgDd6YNNjsxXpsnDCDbrqqS49zx9brq_-nGpcfwmjD5lKWfZunjjVt3_zz8AXyUspE</recordid><startdate>20201228</startdate><enddate>20201228</enddate><creator>Loveland, Donald</creator><creator>Kailkhura, Bhavya</creator><creator>Karande, Piyush</creator><creator>Hiszpanski, Anna M</creator><creator>Han, T. Yong-Jin</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2705-3263</orcidid><orcidid>https://orcid.org/0000-0002-3000-2782</orcidid><orcidid>https://orcid.org/0000-0002-0327-1936</orcidid><orcidid>https://orcid.org/0000000227053263</orcidid><orcidid>https://orcid.org/0000000230002782</orcidid></search><sort><creationdate>20201228</creationdate><title>Automated Identification of Molecular Crystals’ Packing Motifs</title><author>Loveland, Donald ; Kailkhura, Bhavya ; Karande, Piyush ; Hiszpanski, Anna M ; Han, T. Yong-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-8a667069cd53b5fa784f4fb0fac0fdd778f09e531461153102ba060dffbaebed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Aromatic hydrocarbons</topic><topic>Automation</topic><topic>Chemical Information</topic><topic>Chemistry</topic><topic>Chemistry, Medicinal</topic><topic>Chemistry, Multidisciplinary</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computer Science, Interdisciplinary Applications</topic><topic>Crystal structure</topic><topic>crystals</topic><topic>Engineering research</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Labeling</topic><topic>Labels</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Materials science</topic><topic>molecular interactions</topic><topic>Molecular structure</topic><topic>molecules</topic><topic>Optimization</topic><topic>Pharmacology &amp; Pharmacy</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loveland, Donald</creatorcontrib><creatorcontrib>Kailkhura, Bhavya</creatorcontrib><creatorcontrib>Karande, Piyush</creatorcontrib><creatorcontrib>Hiszpanski, Anna M</creatorcontrib><creatorcontrib>Han, T. Yong-Jin</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loveland, Donald</au><au>Kailkhura, Bhavya</au><au>Karande, Piyush</au><au>Hiszpanski, Anna M</au><au>Han, T. Yong-Jin</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Identification of Molecular Crystals’ Packing Motifs</atitle><jtitle>Journal of chemical information and modeling</jtitle><stitle>J CHEM INF MODEL</stitle><addtitle>J. Chem. Inf. Model</addtitle><date>2020-12-28</date><risdate>2020</risdate><volume>60</volume><issue>12</issue><spage>6147</spage><epage>6154</epage><pages>6147-6154</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Packing motifspatterns in how molecules orient relative to one another in a crystal structureare an important concept in many subdisciplines of materials science because of correlations observed between specific packing motifs and properties of interest. That said, packing motif data sets have remained small and noisy due to intensive manual labeling processes and insufficient labeling schemes. The most prominent labeling algorithms calculate relative interplanar angles of nearest neighbor molecules to determine the packing motif of a molecular crystal, but this simple approach can fail when neighbors are naively sampled isotropically around the crystal structure. To remedy this issue, we propose an optimization algorithm, which rotates the molecular crystal structure to find representative molecules that inform the packing motif. We package this algorithm into an automated frameworkAutopackwhich both optimally rotates the crystal structure and labels the packing motif based on the appropriate neighboring molecules. In this work, we detail the Autopack framework and its performance, which shows improvements compared to previous state-of-the-art labeling methods, providing the first quantitative point of comparison for packing motif labeling algorithms. Furthermore, using Autopack (available at https://ipo.llnl.gov/technologies/software/autopack), we perform the first large-scale study of potential relationships between chemicals’ compositions and packing motifs, which shows that these relationships are more complex than previously hypothesized from studies that used only tens of polycyclic aromatic hydrocarbon molecules. Autopack’s capabilities help pose next steps for crystal engineering research focusing not only on a molecule’s adoption of a specific packing motif but also on new structure–property relationships.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33245232</pmid><doi>10.1021/acs.jcim.0c01134</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2705-3263</orcidid><orcidid>https://orcid.org/0000-0002-3000-2782</orcidid><orcidid>https://orcid.org/0000-0002-0327-1936</orcidid><orcidid>https://orcid.org/0000000227053263</orcidid><orcidid>https://orcid.org/0000000230002782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2020-12, Vol.60 (12), p.6147-6154
issn 1549-9596
1549-960X
language eng
recordid cdi_webofscience_primary_000608875100054
source ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Aromatic hydrocarbons
Automation
Chemical Information
Chemistry
Chemistry, Medicinal
Chemistry, Multidisciplinary
Computer Science
Computer Science, Information Systems
Computer Science, Interdisciplinary Applications
Crystal structure
crystals
Engineering research
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Labeling
Labels
Life Sciences & Biomedicine
Materials science
molecular interactions
Molecular structure
molecules
Optimization
Pharmacology & Pharmacy
Physical Sciences
Science & Technology
Technology
title Automated Identification of Molecular Crystals’ Packing Motifs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Identification%20of%20Molecular%20Crystals%E2%80%99%20Packing%20Motifs&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Loveland,%20Donald&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-12-28&rft.volume=60&rft.issue=12&rft.spage=6147&rft.epage=6154&rft.pages=6147-6154&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c01134&rft_dat=%3Cproquest_webof%3E2475526740%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475526740&rft_id=info:pmid/33245232&rfr_iscdi=true