The evolution of the size–mass relation at z = 1–3 derived from the complete Hubble Frontier Fields data set

ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-02, Vol.501 (1), p.1028-1037
Hauptverfasser: Yang, Lilan, Roberts-Borsani, Guido, Treu, Tommaso, Birrer, Simon, Morishita, Takahiro, Bradač, Maruša
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1037
container_issue 1
container_start_page 1028
container_title Monthly notices of the Royal Astronomical Society
container_volume 501
creator Yang, Lilan
Roberts-Borsani, Guido
Treu, Tommaso
Birrer, Simon
Morishita, Takahiro
Bradač, Maruša
description ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into star-forming or quiescent classes based on their rest-frame UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and mass for the late-type galaxies with $M_{*}\gt 3\times 10^{9}\, \mathrm{M}_{\odot }$ at 1 < z < 2.5 and $M_{*}\gt 5\times 10^{9}\, \mathrm{M}_{\odot }$ at 2.5 < z < 3, and at a fixed stellar mass, we find galaxy sizes evolve as $R \rm _{eff} \propto (1+z)^{-1.05\pm 0.37}$. The intrinsic scatter is
doi_str_mv 10.1093/mnras/staa3713
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_webofscience_primary_000608474800079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/staa3713</oup_id><sourcerecordid>10.1093/mnras/staa3713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-ca54880dafe32301170c9f0caa2b9b8104735c773246dd0d0dfef65218f8e3ed3</originalsourceid><addsrcrecordid>eNqNkM1KxDAQgIMouK5ePecq0jVp-pMePEhxXWHBy3ouaTLBSNuUJF1xT76Db-iTWLvqVZnDDDPzDcOH0DklC0oKdtV2TvgrH4RgOWUHaEZZlkZxkWWHaEYISyOeU3qMTrx_JoQkLM5mqN88AYatbYZgbIetxmFseLODj7f3VniPHTRimomAd_ga03HAsAJntqCwdradEGnbvoEAeDXUdQN46WwXDDi8NNAoj5UIAnsIp-hIi8bD2Xeeo8fl7aZcReuHu_vyZh1JxooQSZEmnBMlNLCYEUpzIgtNpBBxXdSckiRnqcxzFieZUmQMDTpLY8o1BwaKzdFif1c6670DXfXOtMK9VpRUX76qyVf142sE-B54gdpqLw10En6hUVhGeJInfKzyojRhklLaoQsjevl_dNy-2G_bof_rqU8PiZHz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The evolution of the size–mass relation at z = 1–3 derived from the complete Hubble Frontier Fields data set</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Yang, Lilan ; Roberts-Borsani, Guido ; Treu, Tommaso ; Birrer, Simon ; Morishita, Takahiro ; Bradač, Maruša</creator><creatorcontrib>Yang, Lilan ; Roberts-Borsani, Guido ; Treu, Tommaso ; Birrer, Simon ; Morishita, Takahiro ; Bradač, Maruša</creatorcontrib><description><![CDATA[ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into star-forming or quiescent classes based on their rest-frame UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and mass for the late-type galaxies with $M_{*}\gt 3\times 10^{9}\, \mathrm{M}_{\odot }$ at 1 < z < 2.5 and $M_{*}\gt 5\times 10^{9}\, \mathrm{M}_{\odot }$ at 2.5 < z < 3, and at a fixed stellar mass, we find galaxy sizes evolve as $R \rm _{eff} \propto (1+z)^{-1.05\pm 0.37}$. The intrinsic scatter is <0.1 dex at z < 1.5 but increases to ∼0.3 dex at higher redshift. The results are in good agreement with those obtained in blank fields. We evaluate the uncertainties associated with the choice of lens model by comparing size measurements using five different and publicly available models, finding the choice of lens model leads to a 3.7 per cent uncertainty of the median value, and ∼25  per cent scatter for individual galaxies. Our work demonstrates the use of strong lensing magnification to boost resolution does not introduce significant uncertainties in this kind of work, and paves the way for wholesale applications of the sophisticated lens reconstruction technique to higher redshifts and larger samples.]]></description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/staa3713</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Astronomy &amp; Astrophysics ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2021-02, Vol.501 (1), p.1028-1037</ispartof><rights>2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>24</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608474800079</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c339t-ca54880dafe32301170c9f0caa2b9b8104735c773246dd0d0dfef65218f8e3ed3</citedby><cites>FETCH-LOGICAL-c339t-ca54880dafe32301170c9f0caa2b9b8104735c773246dd0d0dfef65218f8e3ed3</cites><orcidid>0000-0002-8460-0390 ; 0000-0002-8434-880X ; 0000-0001-5984-0395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1605,27928,27929</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/staa3713$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Yang, Lilan</creatorcontrib><creatorcontrib>Roberts-Borsani, Guido</creatorcontrib><creatorcontrib>Treu, Tommaso</creatorcontrib><creatorcontrib>Birrer, Simon</creatorcontrib><creatorcontrib>Morishita, Takahiro</creatorcontrib><creatorcontrib>Bradač, Maruša</creatorcontrib><title>The evolution of the size–mass relation at z = 1–3 derived from the complete Hubble Frontier Fields data set</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>MON NOT R ASTRON SOC</addtitle><description><![CDATA[ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into star-forming or quiescent classes based on their rest-frame UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and mass for the late-type galaxies with $M_{*}\gt 3\times 10^{9}\, \mathrm{M}_{\odot }$ at 1 < z < 2.5 and $M_{*}\gt 5\times 10^{9}\, \mathrm{M}_{\odot }$ at 2.5 < z < 3, and at a fixed stellar mass, we find galaxy sizes evolve as $R \rm _{eff} \propto (1+z)^{-1.05\pm 0.37}$. The intrinsic scatter is <0.1 dex at z < 1.5 but increases to ∼0.3 dex at higher redshift. The results are in good agreement with those obtained in blank fields. We evaluate the uncertainties associated with the choice of lens model by comparing size measurements using five different and publicly available models, finding the choice of lens model leads to a 3.7 per cent uncertainty of the median value, and ∼25  per cent scatter for individual galaxies. Our work demonstrates the use of strong lensing magnification to boost resolution does not introduce significant uncertainties in this kind of work, and paves the way for wholesale applications of the sophisticated lens reconstruction technique to higher redshifts and larger samples.]]></description><subject>Astronomy &amp; Astrophysics</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1KxDAQgIMouK5ePecq0jVp-pMePEhxXWHBy3ouaTLBSNuUJF1xT76Db-iTWLvqVZnDDDPzDcOH0DklC0oKdtV2TvgrH4RgOWUHaEZZlkZxkWWHaEYISyOeU3qMTrx_JoQkLM5mqN88AYatbYZgbIetxmFseLODj7f3VniPHTRimomAd_ga03HAsAJntqCwdradEGnbvoEAeDXUdQN46WwXDDi8NNAoj5UIAnsIp-hIi8bD2Xeeo8fl7aZcReuHu_vyZh1JxooQSZEmnBMlNLCYEUpzIgtNpBBxXdSckiRnqcxzFieZUmQMDTpLY8o1BwaKzdFif1c6670DXfXOtMK9VpRUX76qyVf142sE-B54gdpqLw10En6hUVhGeJInfKzyojRhklLaoQsjevl_dNy-2G_bof_rqU8PiZHz</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Yang, Lilan</creator><creator>Roberts-Borsani, Guido</creator><creator>Treu, Tommaso</creator><creator>Birrer, Simon</creator><creator>Morishita, Takahiro</creator><creator>Bradač, Maruša</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8460-0390</orcidid><orcidid>https://orcid.org/0000-0002-8434-880X</orcidid><orcidid>https://orcid.org/0000-0001-5984-0395</orcidid></search><sort><creationdate>20210201</creationdate><title>The evolution of the size–mass relation at z = 1–3 derived from the complete Hubble Frontier Fields data set</title><author>Yang, Lilan ; Roberts-Borsani, Guido ; Treu, Tommaso ; Birrer, Simon ; Morishita, Takahiro ; Bradač, Maruša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-ca54880dafe32301170c9f0caa2b9b8104735c773246dd0d0dfef65218f8e3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy &amp; Astrophysics</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lilan</creatorcontrib><creatorcontrib>Roberts-Borsani, Guido</creatorcontrib><creatorcontrib>Treu, Tommaso</creatorcontrib><creatorcontrib>Birrer, Simon</creatorcontrib><creatorcontrib>Morishita, Takahiro</creatorcontrib><creatorcontrib>Bradač, Maruša</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Lilan</au><au>Roberts-Borsani, Guido</au><au>Treu, Tommaso</au><au>Birrer, Simon</au><au>Morishita, Takahiro</au><au>Bradač, Maruša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of the size–mass relation at z = 1–3 derived from the complete Hubble Frontier Fields data set</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>MON NOT R ASTRON SOC</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>501</volume><issue>1</issue><spage>1028</spage><epage>1037</epage><pages>1028-1037</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract><![CDATA[ABSTRACT We measure the size–mass relation and its evolution between redshifts 1 < z < 3, using galaxies lensed by six foreground Hubble Frontier Fields clusters. The power afforded by strong gravitation lensing allows us to observe galaxies with higher angular resolution beyond current facilities. We select a stellar mass limited sample and divide them into star-forming or quiescent classes based on their rest-frame UVJ colours from the ASTRODEEP catalogues. Source reconstruction is carried out with the recently released lenstruction software, which is built on the multipurpose gravitational lensing software lenstronomy. We derive the empirical relation between size and mass for the late-type galaxies with $M_{*}\gt 3\times 10^{9}\, \mathrm{M}_{\odot }$ at 1 < z < 2.5 and $M_{*}\gt 5\times 10^{9}\, \mathrm{M}_{\odot }$ at 2.5 < z < 3, and at a fixed stellar mass, we find galaxy sizes evolve as $R \rm _{eff} \propto (1+z)^{-1.05\pm 0.37}$. The intrinsic scatter is <0.1 dex at z < 1.5 but increases to ∼0.3 dex at higher redshift. The results are in good agreement with those obtained in blank fields. We evaluate the uncertainties associated with the choice of lens model by comparing size measurements using five different and publicly available models, finding the choice of lens model leads to a 3.7 per cent uncertainty of the median value, and ∼25  per cent scatter for individual galaxies. Our work demonstrates the use of strong lensing magnification to boost resolution does not introduce significant uncertainties in this kind of work, and paves the way for wholesale applications of the sophisticated lens reconstruction technique to higher redshifts and larger samples.]]></abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/staa3713</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8460-0390</orcidid><orcidid>https://orcid.org/0000-0002-8434-880X</orcidid><orcidid>https://orcid.org/0000-0001-5984-0395</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2021-02, Vol.501 (1), p.1028-1037
issn 0035-8711
1365-2966
language eng
recordid cdi_webofscience_primary_000608474800079
source Access via Oxford University Press (Open Access Collection)
subjects Astronomy & Astrophysics
Physical Sciences
Science & Technology
title The evolution of the size–mass relation at z = 1–3 derived from the complete Hubble Frontier Fields data set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20the%20size%E2%80%93mass%20relation%20at%20z%20=%201%E2%80%933%20derived%20from%20the%20complete%20Hubble%20Frontier%20Fields%20data%20set&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Yang,%20Lilan&rft.date=2021-02-01&rft.volume=501&rft.issue=1&rft.spage=1028&rft.epage=1037&rft.pages=1028-1037&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/staa3713&rft_dat=%3Coup_TOX%3E10.1093/mnras/staa3713%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/staa3713&rfr_iscdi=true