([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM

Optimization of the photodegradation of direct red 16 (DR16) under visible light irradiation in the presence of new photocatalyst [n-C 4 H 9 ) 4  N] 3 PMo 2 W 9 (Sn 4+ .xH 2 O)O 39 /TiO 2 (PMoWSn/TiO 2 ) was investigated. PMoWSn/TiO 2 with different ratios of PMoWSn to TiO 2 (2, 11, and 20%) were sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Iranian Chemical Society 2021-07, Vol.18 (7), p.1761-1772
Hauptverfasser: Rafiee, Ezzat, Noori, Elham, Zinatizadeh, Aliakbar, Zanganeh, Hadis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1772
container_issue 7
container_start_page 1761
container_title Journal of the Iranian Chemical Society
container_volume 18
creator Rafiee, Ezzat
Noori, Elham
Zinatizadeh, Aliakbar
Zanganeh, Hadis
description Optimization of the photodegradation of direct red 16 (DR16) under visible light irradiation in the presence of new photocatalyst [n-C 4 H 9 ) 4  N] 3 PMo 2 W 9 (Sn 4+ .xH 2 O)O 39 /TiO 2 (PMoWSn/TiO 2 ) was investigated. PMoWSn/TiO 2 with different ratios of PMoWSn to TiO 2 (2, 11, and 20%) were synthesized by modified sol–gel hydrothermal method. Characterization of the prepared nanocatalysts was carried out by photoluminescence spectroscopy, X-ray diffraction, Fourier transform infrared, field emission scanning electron microscopy, Brunauer Emmett–Teller, and diffuse reflectance spectra. Factorial experimental design was applied to study the interaction effects of five operational variables including DR16 concentration, polyoxometalate content, catalyst loading, reaction time, and pH on the photodegradation process performance. By increasing the amount of PMoWSn, the recombination rate of electrons and holes was decreased and redshift to visible range was observed. Bandgap of the photocatalysts was evaluated from Tauc and Mott–Schottky plots. The efficient and suitable photocatalytic performance of photocatalyst can be attributed to the efficient separation of photo-generated electron–hole pairs and polarization resistance of the catalyst evaluated by Nyquist and Bode plots extracted from electrochemical impedance spectroscopy. The results showed that the photocatalytic activity of 20-PMoWSn/TiO 2 was better than the other nanocatalysts. A central composite design based on response surface methodology was successfully used in optimization of the photodegradation of DR16. The optimum conditions were achieved at acidic pH (3), DR16 concentration of 20 mg/L, and polyoxometalate loading of 20 wt.%. Also this catalyst showed excellent reusability at least after four runs.
doi_str_mv 10.1007/s13738-020-02149-w
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000608385800002CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539544560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-b0bb0a329bcfcd59eb12537f24e400055ced2de597086f19ee51da541ced66e03</originalsourceid><addsrcrecordid>eNqNUNtOFEEQnRBNQPQHfOrEFzZkoK8z076Z8bIkwBrAQGJMp6enBpos3Wt3r-v6HXyA3-KX0TCib8aHSlVOnVOXUxQvCd4jGNf7kbCaNSWmOAfhslxtFFukZqKknDZPHmtcX2wWz2K8xljUWPCt4nbnsytbPpUT_uvn8Rf28cjTc7lz6vju3vcpnU1mTO6f2RmdvEYaOVihbzbabg5oceWTNzrp-TomNPgwIj1cBt3rZL1DfkBvT0iFzJUO2iQI9sfY0K5HfpHszSOwCN5AjKhbo5PTo-fF00HPI7z4nbeLT-_fnbXT8nD24aB9c1gaJqpUdrjrsGZUdmYwvZDQESpYPVAOHOcPhYGe9iBkjZtqIBJAkF4LTjJeVYDZdvFqnJvXf11CTOraL4PLK1UeJAXnorpn0ZFlgo8xwKAWwd7osFYEq3v31ei-yu6rB_fVKot2R9EKOj9EY8EZ-CPM11W4YY1ocoVpZjf_z25tejCt9UuXspSN0pjp7hLC3x_-cd4d2Piopg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539544560</pqid></control><display><type>article</type><title>([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Rafiee, Ezzat ; Noori, Elham ; Zinatizadeh, Aliakbar ; Zanganeh, Hadis</creator><creatorcontrib>Rafiee, Ezzat ; Noori, Elham ; Zinatizadeh, Aliakbar ; Zanganeh, Hadis</creatorcontrib><description>Optimization of the photodegradation of direct red 16 (DR16) under visible light irradiation in the presence of new photocatalyst [n-C 4 H 9 ) 4  N] 3 PMo 2 W 9 (Sn 4+ .xH 2 O)O 39 /TiO 2 (PMoWSn/TiO 2 ) was investigated. PMoWSn/TiO 2 with different ratios of PMoWSn to TiO 2 (2, 11, and 20%) were synthesized by modified sol–gel hydrothermal method. Characterization of the prepared nanocatalysts was carried out by photoluminescence spectroscopy, X-ray diffraction, Fourier transform infrared, field emission scanning electron microscopy, Brunauer Emmett–Teller, and diffuse reflectance spectra. Factorial experimental design was applied to study the interaction effects of five operational variables including DR16 concentration, polyoxometalate content, catalyst loading, reaction time, and pH on the photodegradation process performance. By increasing the amount of PMoWSn, the recombination rate of electrons and holes was decreased and redshift to visible range was observed. Bandgap of the photocatalysts was evaluated from Tauc and Mott–Schottky plots. The efficient and suitable photocatalytic performance of photocatalyst can be attributed to the efficient separation of photo-generated electron–hole pairs and polarization resistance of the catalyst evaluated by Nyquist and Bode plots extracted from electrochemical impedance spectroscopy. The results showed that the photocatalytic activity of 20-PMoWSn/TiO 2 was better than the other nanocatalysts. A central composite design based on response surface methodology was successfully used in optimization of the photodegradation of DR16. The optimum conditions were achieved at acidic pH (3), DR16 concentration of 20 mg/L, and polyoxometalate loading of 20 wt.%. Also this catalyst showed excellent reusability at least after four runs.</description><identifier>ISSN: 1735-207X</identifier><identifier>EISSN: 1735-2428</identifier><identifier>DOI: 10.1007/s13738-020-02149-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biochemistry ; Catalysts ; Catalytic activity ; Chemistry ; Chemistry and Materials Science ; Chemistry, Multidisciplinary ; Design of experiments ; Electrochemical impedance spectroscopy ; Electron recombination ; Field emission microscopy ; Fourier transforms ; Inorganic Chemistry ; Light irradiation ; Optimization ; Organic Chemistry ; Original Paper ; Photocatalysis ; Photocatalysts ; Photodegradation ; Photoluminescence ; Physical Chemistry ; Physical Sciences ; Polyoxometallates ; Reaction time ; Red shift ; Response surface methodology ; Science &amp; Technology ; Sol-gel processes ; Spectrum analysis ; Titanium dioxide</subject><ispartof>Journal of the Iranian Chemical Society, 2021-07, Vol.18 (7), p.1761-1772</ispartof><rights>Iranian Chemical Society 2021</rights><rights>Iranian Chemical Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608385800002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c356t-b0bb0a329bcfcd59eb12537f24e400055ced2de597086f19ee51da541ced66e03</citedby><cites>FETCH-LOGICAL-c356t-b0bb0a329bcfcd59eb12537f24e400055ced2de597086f19ee51da541ced66e03</cites><orcidid>0000-0002-6848-9602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13738-020-02149-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13738-020-02149-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Rafiee, Ezzat</creatorcontrib><creatorcontrib>Noori, Elham</creatorcontrib><creatorcontrib>Zinatizadeh, Aliakbar</creatorcontrib><creatorcontrib>Zanganeh, Hadis</creatorcontrib><title>([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM</title><title>Journal of the Iranian Chemical Society</title><addtitle>J IRAN CHEM SOC</addtitle><description>Optimization of the photodegradation of direct red 16 (DR16) under visible light irradiation in the presence of new photocatalyst [n-C 4 H 9 ) 4  N] 3 PMo 2 W 9 (Sn 4+ .xH 2 O)O 39 /TiO 2 (PMoWSn/TiO 2 ) was investigated. PMoWSn/TiO 2 with different ratios of PMoWSn to TiO 2 (2, 11, and 20%) were synthesized by modified sol–gel hydrothermal method. Characterization of the prepared nanocatalysts was carried out by photoluminescence spectroscopy, X-ray diffraction, Fourier transform infrared, field emission scanning electron microscopy, Brunauer Emmett–Teller, and diffuse reflectance spectra. Factorial experimental design was applied to study the interaction effects of five operational variables including DR16 concentration, polyoxometalate content, catalyst loading, reaction time, and pH on the photodegradation process performance. By increasing the amount of PMoWSn, the recombination rate of electrons and holes was decreased and redshift to visible range was observed. Bandgap of the photocatalysts was evaluated from Tauc and Mott–Schottky plots. The efficient and suitable photocatalytic performance of photocatalyst can be attributed to the efficient separation of photo-generated electron–hole pairs and polarization resistance of the catalyst evaluated by Nyquist and Bode plots extracted from electrochemical impedance spectroscopy. The results showed that the photocatalytic activity of 20-PMoWSn/TiO 2 was better than the other nanocatalysts. A central composite design based on response surface methodology was successfully used in optimization of the photodegradation of DR16. The optimum conditions were achieved at acidic pH (3), DR16 concentration of 20 mg/L, and polyoxometalate loading of 20 wt.%. Also this catalyst showed excellent reusability at least after four runs.</description><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry, Multidisciplinary</subject><subject>Design of experiments</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electron recombination</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Inorganic Chemistry</subject><subject>Light irradiation</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photodegradation</subject><subject>Photoluminescence</subject><subject>Physical Chemistry</subject><subject>Physical Sciences</subject><subject>Polyoxometallates</subject><subject>Reaction time</subject><subject>Red shift</subject><subject>Response surface methodology</subject><subject>Science &amp; Technology</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><issn>1735-207X</issn><issn>1735-2428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNUNtOFEEQnRBNQPQHfOrEFzZkoK8z076Z8bIkwBrAQGJMp6enBpos3Wt3r-v6HXyA3-KX0TCib8aHSlVOnVOXUxQvCd4jGNf7kbCaNSWmOAfhslxtFFukZqKknDZPHmtcX2wWz2K8xljUWPCt4nbnsytbPpUT_uvn8Rf28cjTc7lz6vju3vcpnU1mTO6f2RmdvEYaOVihbzbabg5oceWTNzrp-TomNPgwIj1cBt3rZL1DfkBvT0iFzJUO2iQI9sfY0K5HfpHszSOwCN5AjKhbo5PTo-fF00HPI7z4nbeLT-_fnbXT8nD24aB9c1gaJqpUdrjrsGZUdmYwvZDQESpYPVAOHOcPhYGe9iBkjZtqIBJAkF4LTjJeVYDZdvFqnJvXf11CTOraL4PLK1UeJAXnorpn0ZFlgo8xwKAWwd7osFYEq3v31ei-yu6rB_fVKot2R9EKOj9EY8EZ-CPM11W4YY1ocoVpZjf_z25tejCt9UuXspSN0pjp7hLC3x_-cd4d2Piopg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Rafiee, Ezzat</creator><creator>Noori, Elham</creator><creator>Zinatizadeh, Aliakbar</creator><creator>Zanganeh, Hadis</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6848-9602</orcidid></search><sort><creationdate>20210701</creationdate><title>([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM</title><author>Rafiee, Ezzat ; Noori, Elham ; Zinatizadeh, Aliakbar ; Zanganeh, Hadis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-b0bb0a329bcfcd59eb12537f24e400055ced2de597086f19ee51da541ced66e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry, Multidisciplinary</topic><topic>Design of experiments</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electron recombination</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Inorganic Chemistry</topic><topic>Light irradiation</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photodegradation</topic><topic>Photoluminescence</topic><topic>Physical Chemistry</topic><topic>Physical Sciences</topic><topic>Polyoxometallates</topic><topic>Reaction time</topic><topic>Red shift</topic><topic>Response surface methodology</topic><topic>Science &amp; Technology</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafiee, Ezzat</creatorcontrib><creatorcontrib>Noori, Elham</creatorcontrib><creatorcontrib>Zinatizadeh, Aliakbar</creatorcontrib><creatorcontrib>Zanganeh, Hadis</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of the Iranian Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafiee, Ezzat</au><au>Noori, Elham</au><au>Zinatizadeh, Aliakbar</au><au>Zanganeh, Hadis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM</atitle><jtitle>Journal of the Iranian Chemical Society</jtitle><stitle>J IRAN CHEM SOC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>18</volume><issue>7</issue><spage>1761</spage><epage>1772</epage><pages>1761-1772</pages><issn>1735-207X</issn><eissn>1735-2428</eissn><abstract>Optimization of the photodegradation of direct red 16 (DR16) under visible light irradiation in the presence of new photocatalyst [n-C 4 H 9 ) 4  N] 3 PMo 2 W 9 (Sn 4+ .xH 2 O)O 39 /TiO 2 (PMoWSn/TiO 2 ) was investigated. PMoWSn/TiO 2 with different ratios of PMoWSn to TiO 2 (2, 11, and 20%) were synthesized by modified sol–gel hydrothermal method. Characterization of the prepared nanocatalysts was carried out by photoluminescence spectroscopy, X-ray diffraction, Fourier transform infrared, field emission scanning electron microscopy, Brunauer Emmett–Teller, and diffuse reflectance spectra. Factorial experimental design was applied to study the interaction effects of five operational variables including DR16 concentration, polyoxometalate content, catalyst loading, reaction time, and pH on the photodegradation process performance. By increasing the amount of PMoWSn, the recombination rate of electrons and holes was decreased and redshift to visible range was observed. Bandgap of the photocatalysts was evaluated from Tauc and Mott–Schottky plots. The efficient and suitable photocatalytic performance of photocatalyst can be attributed to the efficient separation of photo-generated electron–hole pairs and polarization resistance of the catalyst evaluated by Nyquist and Bode plots extracted from electrochemical impedance spectroscopy. The results showed that the photocatalytic activity of 20-PMoWSn/TiO 2 was better than the other nanocatalysts. A central composite design based on response surface methodology was successfully used in optimization of the photodegradation of DR16. The optimum conditions were achieved at acidic pH (3), DR16 concentration of 20 mg/L, and polyoxometalate loading of 20 wt.%. Also this catalyst showed excellent reusability at least after four runs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13738-020-02149-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6848-9602</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1735-207X
ispartof Journal of the Iranian Chemical Society, 2021-07, Vol.18 (7), p.1761-1772
issn 1735-207X
1735-2428
language eng
recordid cdi_webofscience_primary_000608385800002CitationCount
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Analytical Chemistry
Biochemistry
Catalysts
Catalytic activity
Chemistry
Chemistry and Materials Science
Chemistry, Multidisciplinary
Design of experiments
Electrochemical impedance spectroscopy
Electron recombination
Field emission microscopy
Fourier transforms
Inorganic Chemistry
Light irradiation
Optimization
Organic Chemistry
Original Paper
Photocatalysis
Photocatalysts
Photodegradation
Photoluminescence
Physical Chemistry
Physical Sciences
Polyoxometallates
Reaction time
Red shift
Response surface methodology
Science & Technology
Sol-gel processes
Spectrum analysis
Titanium dioxide
title ([n-C4H9)4 N]3PMo2W9(Sn4+.xH2O)O39/TiO2): a new visible photocatalyst for photodegradation of DR16 characterization and optimization process by RSM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T06%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(%5Bn-C4H9)4%C2%A0N%5D3PMo2W9(Sn4+.xH2O)O39/TiO2):%20a%20new%20visible%20photocatalyst%20for%20photodegradation%20of%20DR16%20characterization%20and%20optimization%20process%20by%20RSM&rft.jtitle=Journal%20of%20the%20Iranian%20Chemical%20Society&rft.au=Rafiee,%20Ezzat&rft.date=2021-07-01&rft.volume=18&rft.issue=7&rft.spage=1761&rft.epage=1772&rft.pages=1761-1772&rft.issn=1735-207X&rft.eissn=1735-2428&rft_id=info:doi/10.1007/s13738-020-02149-w&rft_dat=%3Cproquest_webof%3E2539544560%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539544560&rft_id=info:pmid/&rfr_iscdi=true