Selective monitoring

We study selective monitors for labelled Markov chains. Monitors observe the outputs that are generated by a Markov chain during its run, with the goal of identifying runs as correct or faulty. A monitor is selective if it skips observations in order to reduce monitoring overhead. We are interested...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 2021-05, Vol.117, p.99-129
Hauptverfasser: Grigore, Radu, Kiefer, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue
container_start_page 99
container_title Journal of computer and system sciences
container_volume 117
creator Grigore, Radu
Kiefer, Stefan
description We study selective monitors for labelled Markov chains. Monitors observe the outputs that are generated by a Markov chain during its run, with the goal of identifying runs as correct or faulty. A monitor is selective if it skips observations in order to reduce monitoring overhead. We are interested in monitors that minimize the expected number of observations. We establish an undecidability result for selectively monitoring general Markov chains. On the other hand, we show for non-hidden Markov chains (where any output identifies the state the Markov chain is in) that simple optimal monitors exist and can be computed efficiently, based on DFA language equivalence. These monitors do not depend on the precise transition probabilities in the Markov chain. We report on experiments where we compute these monitors for several open-source Java projects.
doi_str_mv 10.1016/j.jcss.2020.09.003
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000606822100007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000020301021</els_id><sourcerecordid>S0022000020301021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-a2341b15c9811aa336e3d54f46d9197a02d62ef5a0d5665dd5bbd1373e935d7d3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7ePHnyLq0zSZM24EWKX7DgQT2HNEklZbeRpK74703ZxaM4l7m8zzDPS8gFQomA4nooB5NSSYFCCbIEYAdkgSChoDWtDskCgNIC8hyTk5QGAEQu2IKcv7i1M5PfustNGP0Uoh_fT8lRr9fJne33krzd3722j8Xq-eGpvV0VhnKcCk1ZhR1yIxtErRkTjlle9ZWwEmWtgVpBXc81WC4Et5Z3nUVWMycZt7VlS0J3d00MKUXXq4_oNzp-KwQ1e6lBzV5q9lIgVfbK0NUO-nJd6JPxbjTuF8yGAkRDKc6ydU43_0-3ftKTD2MbPscpozc71OUKtt5Ftcetj7kyZYP_688fXeh1fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selective monitoring</title><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Grigore, Radu ; Kiefer, Stefan</creator><creatorcontrib>Grigore, Radu ; Kiefer, Stefan</creatorcontrib><description>We study selective monitors for labelled Markov chains. Monitors observe the outputs that are generated by a Markov chain during its run, with the goal of identifying runs as correct or faulty. A monitor is selective if it skips observations in order to reduce monitoring overhead. We are interested in monitors that minimize the expected number of observations. We establish an undecidability result for selectively monitoring general Markov chains. On the other hand, we show for non-hidden Markov chains (where any output identifies the state the Markov chain is in) that simple optimal monitors exist and can be computed efficiently, based on DFA language equivalence. These monitors do not depend on the precise transition probabilities in the Markov chain. We report on experiments where we compute these monitors for several open-source Java projects.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2020.09.003</identifier><language>eng</language><publisher>SAN DIEGO: Elsevier Inc</publisher><subject>Automata ; Computer Science ; Computer Science, Hardware &amp; Architecture ; Computer Science, Theory &amp; Methods ; Language equivalence ; Markov chains ; Probabilistic systems ; Runtime monitoring ; Science &amp; Technology ; Technology</subject><ispartof>Journal of computer and system sciences, 2021-05, Vol.117, p.99-129</ispartof><rights>2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606822100007</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c251t-a2341b15c9811aa336e3d54f46d9197a02d62ef5a0d5665dd5bbd1373e935d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcss.2020.09.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Grigore, Radu</creatorcontrib><creatorcontrib>Kiefer, Stefan</creatorcontrib><title>Selective monitoring</title><title>Journal of computer and system sciences</title><addtitle>J COMPUT SYST SCI</addtitle><description>We study selective monitors for labelled Markov chains. Monitors observe the outputs that are generated by a Markov chain during its run, with the goal of identifying runs as correct or faulty. A monitor is selective if it skips observations in order to reduce monitoring overhead. We are interested in monitors that minimize the expected number of observations. We establish an undecidability result for selectively monitoring general Markov chains. On the other hand, we show for non-hidden Markov chains (where any output identifies the state the Markov chain is in) that simple optimal monitors exist and can be computed efficiently, based on DFA language equivalence. These monitors do not depend on the precise transition probabilities in the Markov chain. We report on experiments where we compute these monitors for several open-source Java projects.</description><subject>Automata</subject><subject>Computer Science</subject><subject>Computer Science, Hardware &amp; Architecture</subject><subject>Computer Science, Theory &amp; Methods</subject><subject>Language equivalence</subject><subject>Markov chains</subject><subject>Probabilistic systems</subject><subject>Runtime monitoring</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LxDAQhoMouK7ePHnyLq0zSZM24EWKX7DgQT2HNEklZbeRpK74703ZxaM4l7m8zzDPS8gFQomA4nooB5NSSYFCCbIEYAdkgSChoDWtDskCgNIC8hyTk5QGAEQu2IKcv7i1M5PfustNGP0Uoh_fT8lRr9fJne33krzd3722j8Xq-eGpvV0VhnKcCk1ZhR1yIxtErRkTjlle9ZWwEmWtgVpBXc81WC4Et5Z3nUVWMycZt7VlS0J3d00MKUXXq4_oNzp-KwQ1e6lBzV5q9lIgVfbK0NUO-nJd6JPxbjTuF8yGAkRDKc6ydU43_0-3ftKTD2MbPscpozc71OUKtt5Ftcetj7kyZYP_688fXeh1fg</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Grigore, Radu</creator><creator>Kiefer, Stefan</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>95M</scope><scope>AFTVD</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202105</creationdate><title>Selective monitoring</title><author>Grigore, Radu ; Kiefer, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-a2341b15c9811aa336e3d54f46d9197a02d62ef5a0d5665dd5bbd1373e935d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automata</topic><topic>Computer Science</topic><topic>Computer Science, Hardware &amp; Architecture</topic><topic>Computer Science, Theory &amp; Methods</topic><topic>Language equivalence</topic><topic>Markov chains</topic><topic>Probabilistic systems</topic><topic>Runtime monitoring</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigore, Radu</creatorcontrib><creatorcontrib>Kiefer, Stefan</creatorcontrib><collection>Conference Proceedings Citation Index - Science (CPCI-S)</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S) 2021</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigore, Radu</au><au>Kiefer, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective monitoring</atitle><jtitle>Journal of computer and system sciences</jtitle><stitle>J COMPUT SYST SCI</stitle><date>2021-05</date><risdate>2021</risdate><volume>117</volume><spage>99</spage><epage>129</epage><pages>99-129</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>We study selective monitors for labelled Markov chains. Monitors observe the outputs that are generated by a Markov chain during its run, with the goal of identifying runs as correct or faulty. A monitor is selective if it skips observations in order to reduce monitoring overhead. We are interested in monitors that minimize the expected number of observations. We establish an undecidability result for selectively monitoring general Markov chains. On the other hand, we show for non-hidden Markov chains (where any output identifies the state the Markov chain is in) that simple optimal monitors exist and can be computed efficiently, based on DFA language equivalence. These monitors do not depend on the precise transition probabilities in the Markov chain. We report on experiments where we compute these monitors for several open-source Java projects.</abstract><cop>SAN DIEGO</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2020.09.003</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 2021-05, Vol.117, p.99-129
issn 0022-0000
1090-2724
language eng
recordid cdi_webofscience_primary_000606822100007
source Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Automata
Computer Science
Computer Science, Hardware & Architecture
Computer Science, Theory & Methods
Language equivalence
Markov chains
Probabilistic systems
Runtime monitoring
Science & Technology
Technology
title Selective monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20monitoring&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Grigore,%20Radu&rft.date=2021-05&rft.volume=117&rft.spage=99&rft.epage=129&rft.pages=99-129&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2020.09.003&rft_dat=%3Celsevier_webof%3ES0022000020301021%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022000020301021&rfr_iscdi=true