Enzyme Replacement Therapy for Mucopolysaccharidosis IIID using Recombinant Human alpha-N-Acetylglucosamine-6-Sulfatase in Neonatal Mice
There is currently no cure or effective treatment available for mucopolysaccharidosis type IIID (MPS IIID, Sanfilippo syndrome type D), a lysosomal storage disorder (LSD) caused by the deficiency of alpha-N-acetylglucosamine-6-sulfatase (GNS). The clinical symptoms of MPS IIID, like other subtypes o...
Gespeichert in:
Veröffentlicht in: | Molecular pharmaceutics 2021-01, Vol.18 (1), p.214-227 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 1 |
container_start_page | 214 |
container_title | Molecular pharmaceutics |
container_volume | 18 |
creator | Wang, Feng Moen, Derek R. Sauni, Chelsee Kan, Shih-hsin Li, Shan Le, Steven Q. Lomenick, Brett Zhang, Xiaoyi Ekins, Sean Singamsetty, Srikanth Wood, Jill Dickson, Patricia Chou, Tsui-Fen |
description | There is currently no cure or effective treatment available for mucopolysaccharidosis type IIID (MPS IIID, Sanfilippo syndrome type D), a lysosomal storage disorder (LSD) caused by the deficiency of alpha-N-acetylglucosamine-6-sulfatase (GNS). The clinical symptoms of MPS IIID, like other subtypes of Sanfilippo syndrome, are largely localized to the central nervous system (CNS), and any treatments aiming to ameliorate or reverse the catastrophic and fatal neurologic decline caused by this disease need to be delivered across the blood-brain barrier. Here, we report a proof-of-concept enzyme replacement therapy (ERT) for MPS IIID using recombinant human alpha-N-acetylglucosamine-6-sulfatase (rhGNS) via intracerebroventricular (ICV) delivery in a neonatal MPS IIID mouse model. We overexpressed and purified rhGNS from CHO cells with a specific activity of 3.9 x 10(4) units/mg protein and a maximal enzymatic activity at lysosomal pH (pH 5.6), which was stable for over one month at 4 degrees C in artificial cerebrospinal fluid (CSF). We demonstrated that rhGNS was taken up by MPS IIID patient fibroblasts via the mannose 6-phosphate (M6P) receptor and reduced intracellular glycosaminoglycans to normal levels. The delivery of 5 mu g of rhGNS into the lateral cerebral ventricle of neonatal MPS IIID mice resulted in normalization of the enzymatic activity in brain tissues; rhGNS was found to be enriched in lysosomes in MPS IIID-treated mice relative to the control. Furthermore, a single dose of rhGNS was able to reduce the accumulated heparan sulfate and beta-hexosaminidase. Our results demonstrate that rhGNS delivered into CSF is a potential therapeutic option for MPS IIID that is worthy of further development. |
doi_str_mv | 10.1021/acs.molpharmaceut.0c00831 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000606803900016CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470626210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-eafd17dfd860f16e2ce8ca5e32435971faad2469a39a014663a6b8bbcb2260883</originalsourceid><addsrcrecordid>eNqNkd1u1DAQhSMEoqXwCsjcIaEs_sl6nRukamnpSm2RoFxbE2eya-SfECeg9Al4bFztsqJ3XHms-c6ZGZ2ieMPoglHO3oNJCx9dv4PBg8FpXFBDqRLsSXHKlpUolaj502OtqpPiRUrfKeXVkovnxYkQglO5EqfF74twP3skX7B32cpjGMndDgfoZ9LFgdxMJvbRzQmMyeNsG5NNZLPZfCRTsmGbhSb6xgbIwqvJQyDwsFh5W54bHGe3ddkhgbcBS1l-nVwHIyQkNpBbjCF_HLmxBl8WzzpwCV8d3rPi2-XF3fqqvP78abM-vy5NxcVYInQtW7VdqyTtmERuUBlYouCVWNYr1gG0vJI1iBooq6QUIBvVNKbhXFKlxFnxYe_bT43H1uSDB3C6H6yHYdYRrH7cCXant_GnVkJyVVXZ4O3BYIg_Jkyj9jYZdA4CxilpXq2o5JIzmtF6j5ohpjRgdxzDqH5IUuck9aMk9SHJrH39755H5d_oMvBuD_zCJnbJWAwGjxilVFKpqKhzxWSm1f_TazvCaGNYxymM4g-ge8TN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470626210</pqid></control><display><type>article</type><title>Enzyme Replacement Therapy for Mucopolysaccharidosis IIID using Recombinant Human alpha-N-Acetylglucosamine-6-Sulfatase in Neonatal Mice</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Wang, Feng ; Moen, Derek R. ; Sauni, Chelsee ; Kan, Shih-hsin ; Li, Shan ; Le, Steven Q. ; Lomenick, Brett ; Zhang, Xiaoyi ; Ekins, Sean ; Singamsetty, Srikanth ; Wood, Jill ; Dickson, Patricia ; Chou, Tsui-Fen</creator><creatorcontrib>Wang, Feng ; Moen, Derek R. ; Sauni, Chelsee ; Kan, Shih-hsin ; Li, Shan ; Le, Steven Q. ; Lomenick, Brett ; Zhang, Xiaoyi ; Ekins, Sean ; Singamsetty, Srikanth ; Wood, Jill ; Dickson, Patricia ; Chou, Tsui-Fen</creatorcontrib><description>There is currently no cure or effective treatment available for mucopolysaccharidosis type IIID (MPS IIID, Sanfilippo syndrome type D), a lysosomal storage disorder (LSD) caused by the deficiency of alpha-N-acetylglucosamine-6-sulfatase (GNS). The clinical symptoms of MPS IIID, like other subtypes of Sanfilippo syndrome, are largely localized to the central nervous system (CNS), and any treatments aiming to ameliorate or reverse the catastrophic and fatal neurologic decline caused by this disease need to be delivered across the blood-brain barrier. Here, we report a proof-of-concept enzyme replacement therapy (ERT) for MPS IIID using recombinant human alpha-N-acetylglucosamine-6-sulfatase (rhGNS) via intracerebroventricular (ICV) delivery in a neonatal MPS IIID mouse model. We overexpressed and purified rhGNS from CHO cells with a specific activity of 3.9 x 10(4) units/mg protein and a maximal enzymatic activity at lysosomal pH (pH 5.6), which was stable for over one month at 4 degrees C in artificial cerebrospinal fluid (CSF). We demonstrated that rhGNS was taken up by MPS IIID patient fibroblasts via the mannose 6-phosphate (M6P) receptor and reduced intracellular glycosaminoglycans to normal levels. The delivery of 5 mu g of rhGNS into the lateral cerebral ventricle of neonatal MPS IIID mice resulted in normalization of the enzymatic activity in brain tissues; rhGNS was found to be enriched in lysosomes in MPS IIID-treated mice relative to the control. Furthermore, a single dose of rhGNS was able to reduce the accumulated heparan sulfate and beta-hexosaminidase. Our results demonstrate that rhGNS delivered into CSF is a potential therapeutic option for MPS IIID that is worthy of further development.</description><identifier>ISSN: 1543-8384</identifier><identifier>EISSN: 1543-8392</identifier><identifier>DOI: 10.1021/acs.molpharmaceut.0c00831</identifier><identifier>PMID: 33320673</identifier><language>eng</language><publisher>WASHINGTON: Amer Chemical Soc</publisher><subject>Animals ; Animals, Newborn ; Brain - drug effects ; Brain - metabolism ; CHO Cells ; Cricetulus ; Disease Models, Animal ; Enzyme Replacement Therapy - methods ; Glycosaminoglycans - metabolism ; Heparitin Sulfate - metabolism ; Humans ; Life Sciences & Biomedicine ; Liver - drug effects ; Liver - metabolism ; Lysosomal Storage Diseases - drug therapy ; Lysosomal Storage Diseases - metabolism ; Lysosomes - drug effects ; Lysosomes - metabolism ; Medicine, Research & Experimental ; Mice ; Mucopolysaccharidosis III - drug therapy ; Mucopolysaccharidosis III - metabolism ; Neurons - drug effects ; Neurons - metabolism ; Pharmacology & Pharmacy ; Receptor, IGF Type 2 - metabolism ; Recombinant Proteins - pharmacology ; Research & Experimental Medicine ; Science & Technology ; Sulfatases - pharmacology</subject><ispartof>Molecular pharmaceutics, 2021-01, Vol.18 (1), p.214-227</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606803900016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c423t-eafd17dfd860f16e2ce8ca5e32435971faad2469a39a014663a6b8bbcb2260883</citedby><cites>FETCH-LOGICAL-c423t-eafd17dfd860f16e2ce8ca5e32435971faad2469a39a014663a6b8bbcb2260883</cites><orcidid>0000-0003-2410-2186 ; 0000-0002-5691-5790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2766,27928,27929,39262</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33320673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Moen, Derek R.</creatorcontrib><creatorcontrib>Sauni, Chelsee</creatorcontrib><creatorcontrib>Kan, Shih-hsin</creatorcontrib><creatorcontrib>Li, Shan</creatorcontrib><creatorcontrib>Le, Steven Q.</creatorcontrib><creatorcontrib>Lomenick, Brett</creatorcontrib><creatorcontrib>Zhang, Xiaoyi</creatorcontrib><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Singamsetty, Srikanth</creatorcontrib><creatorcontrib>Wood, Jill</creatorcontrib><creatorcontrib>Dickson, Patricia</creatorcontrib><creatorcontrib>Chou, Tsui-Fen</creatorcontrib><title>Enzyme Replacement Therapy for Mucopolysaccharidosis IIID using Recombinant Human alpha-N-Acetylglucosamine-6-Sulfatase in Neonatal Mice</title><title>Molecular pharmaceutics</title><addtitle>MOL PHARMACEUT</addtitle><addtitle>Mol Pharm</addtitle><description>There is currently no cure or effective treatment available for mucopolysaccharidosis type IIID (MPS IIID, Sanfilippo syndrome type D), a lysosomal storage disorder (LSD) caused by the deficiency of alpha-N-acetylglucosamine-6-sulfatase (GNS). The clinical symptoms of MPS IIID, like other subtypes of Sanfilippo syndrome, are largely localized to the central nervous system (CNS), and any treatments aiming to ameliorate or reverse the catastrophic and fatal neurologic decline caused by this disease need to be delivered across the blood-brain barrier. Here, we report a proof-of-concept enzyme replacement therapy (ERT) for MPS IIID using recombinant human alpha-N-acetylglucosamine-6-sulfatase (rhGNS) via intracerebroventricular (ICV) delivery in a neonatal MPS IIID mouse model. We overexpressed and purified rhGNS from CHO cells with a specific activity of 3.9 x 10(4) units/mg protein and a maximal enzymatic activity at lysosomal pH (pH 5.6), which was stable for over one month at 4 degrees C in artificial cerebrospinal fluid (CSF). We demonstrated that rhGNS was taken up by MPS IIID patient fibroblasts via the mannose 6-phosphate (M6P) receptor and reduced intracellular glycosaminoglycans to normal levels. The delivery of 5 mu g of rhGNS into the lateral cerebral ventricle of neonatal MPS IIID mice resulted in normalization of the enzymatic activity in brain tissues; rhGNS was found to be enriched in lysosomes in MPS IIID-treated mice relative to the control. Furthermore, a single dose of rhGNS was able to reduce the accumulated heparan sulfate and beta-hexosaminidase. Our results demonstrate that rhGNS delivered into CSF is a potential therapeutic option for MPS IIID that is worthy of further development.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>CHO Cells</subject><subject>Cricetulus</subject><subject>Disease Models, Animal</subject><subject>Enzyme Replacement Therapy - methods</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Heparitin Sulfate - metabolism</subject><subject>Humans</subject><subject>Life Sciences & Biomedicine</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Lysosomal Storage Diseases - drug therapy</subject><subject>Lysosomal Storage Diseases - metabolism</subject><subject>Lysosomes - drug effects</subject><subject>Lysosomes - metabolism</subject><subject>Medicine, Research & Experimental</subject><subject>Mice</subject><subject>Mucopolysaccharidosis III - drug therapy</subject><subject>Mucopolysaccharidosis III - metabolism</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Pharmacology & Pharmacy</subject><subject>Receptor, IGF Type 2 - metabolism</subject><subject>Recombinant Proteins - pharmacology</subject><subject>Research & Experimental Medicine</subject><subject>Science & Technology</subject><subject>Sulfatases - pharmacology</subject><issn>1543-8384</issn><issn>1543-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkd1u1DAQhSMEoqXwCsjcIaEs_sl6nRukamnpSm2RoFxbE2eya-SfECeg9Al4bFztsqJ3XHms-c6ZGZ2ieMPoglHO3oNJCx9dv4PBg8FpXFBDqRLsSXHKlpUolaj502OtqpPiRUrfKeXVkovnxYkQglO5EqfF74twP3skX7B32cpjGMndDgfoZ9LFgdxMJvbRzQmMyeNsG5NNZLPZfCRTsmGbhSb6xgbIwqvJQyDwsFh5W54bHGe3ddkhgbcBS1l-nVwHIyQkNpBbjCF_HLmxBl8WzzpwCV8d3rPi2-XF3fqqvP78abM-vy5NxcVYInQtW7VdqyTtmERuUBlYouCVWNYr1gG0vJI1iBooq6QUIBvVNKbhXFKlxFnxYe_bT43H1uSDB3C6H6yHYdYRrH7cCXant_GnVkJyVVXZ4O3BYIg_Jkyj9jYZdA4CxilpXq2o5JIzmtF6j5ohpjRgdxzDqH5IUuck9aMk9SHJrH39755H5d_oMvBuD_zCJnbJWAwGjxilVFKpqKhzxWSm1f_TazvCaGNYxymM4g-ge8TN</recordid><startdate>20210104</startdate><enddate>20210104</enddate><creator>Wang, Feng</creator><creator>Moen, Derek R.</creator><creator>Sauni, Chelsee</creator><creator>Kan, Shih-hsin</creator><creator>Li, Shan</creator><creator>Le, Steven Q.</creator><creator>Lomenick, Brett</creator><creator>Zhang, Xiaoyi</creator><creator>Ekins, Sean</creator><creator>Singamsetty, Srikanth</creator><creator>Wood, Jill</creator><creator>Dickson, Patricia</creator><creator>Chou, Tsui-Fen</creator><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2410-2186</orcidid><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid></search><sort><creationdate>20210104</creationdate><title>Enzyme Replacement Therapy for Mucopolysaccharidosis IIID using Recombinant Human alpha-N-Acetylglucosamine-6-Sulfatase in Neonatal Mice</title><author>Wang, Feng ; Moen, Derek R. ; Sauni, Chelsee ; Kan, Shih-hsin ; Li, Shan ; Le, Steven Q. ; Lomenick, Brett ; Zhang, Xiaoyi ; Ekins, Sean ; Singamsetty, Srikanth ; Wood, Jill ; Dickson, Patricia ; Chou, Tsui-Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-eafd17dfd860f16e2ce8ca5e32435971faad2469a39a014663a6b8bbcb2260883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>CHO Cells</topic><topic>Cricetulus</topic><topic>Disease Models, Animal</topic><topic>Enzyme Replacement Therapy - methods</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Heparitin Sulfate - metabolism</topic><topic>Humans</topic><topic>Life Sciences & Biomedicine</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Lysosomal Storage Diseases - drug therapy</topic><topic>Lysosomal Storage Diseases - metabolism</topic><topic>Lysosomes - drug effects</topic><topic>Lysosomes - metabolism</topic><topic>Medicine, Research & Experimental</topic><topic>Mice</topic><topic>Mucopolysaccharidosis III - drug therapy</topic><topic>Mucopolysaccharidosis III - metabolism</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Pharmacology & Pharmacy</topic><topic>Receptor, IGF Type 2 - metabolism</topic><topic>Recombinant Proteins - pharmacology</topic><topic>Research & Experimental Medicine</topic><topic>Science & Technology</topic><topic>Sulfatases - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Moen, Derek R.</creatorcontrib><creatorcontrib>Sauni, Chelsee</creatorcontrib><creatorcontrib>Kan, Shih-hsin</creatorcontrib><creatorcontrib>Li, Shan</creatorcontrib><creatorcontrib>Le, Steven Q.</creatorcontrib><creatorcontrib>Lomenick, Brett</creatorcontrib><creatorcontrib>Zhang, Xiaoyi</creatorcontrib><creatorcontrib>Ekins, Sean</creatorcontrib><creatorcontrib>Singamsetty, Srikanth</creatorcontrib><creatorcontrib>Wood, Jill</creatorcontrib><creatorcontrib>Dickson, Patricia</creatorcontrib><creatorcontrib>Chou, Tsui-Fen</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Feng</au><au>Moen, Derek R.</au><au>Sauni, Chelsee</au><au>Kan, Shih-hsin</au><au>Li, Shan</au><au>Le, Steven Q.</au><au>Lomenick, Brett</au><au>Zhang, Xiaoyi</au><au>Ekins, Sean</au><au>Singamsetty, Srikanth</au><au>Wood, Jill</au><au>Dickson, Patricia</au><au>Chou, Tsui-Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzyme Replacement Therapy for Mucopolysaccharidosis IIID using Recombinant Human alpha-N-Acetylglucosamine-6-Sulfatase in Neonatal Mice</atitle><jtitle>Molecular pharmaceutics</jtitle><stitle>MOL PHARMACEUT</stitle><addtitle>Mol Pharm</addtitle><date>2021-01-04</date><risdate>2021</risdate><volume>18</volume><issue>1</issue><spage>214</spage><epage>227</epage><pages>214-227</pages><issn>1543-8384</issn><eissn>1543-8392</eissn><abstract>There is currently no cure or effective treatment available for mucopolysaccharidosis type IIID (MPS IIID, Sanfilippo syndrome type D), a lysosomal storage disorder (LSD) caused by the deficiency of alpha-N-acetylglucosamine-6-sulfatase (GNS). The clinical symptoms of MPS IIID, like other subtypes of Sanfilippo syndrome, are largely localized to the central nervous system (CNS), and any treatments aiming to ameliorate or reverse the catastrophic and fatal neurologic decline caused by this disease need to be delivered across the blood-brain barrier. Here, we report a proof-of-concept enzyme replacement therapy (ERT) for MPS IIID using recombinant human alpha-N-acetylglucosamine-6-sulfatase (rhGNS) via intracerebroventricular (ICV) delivery in a neonatal MPS IIID mouse model. We overexpressed and purified rhGNS from CHO cells with a specific activity of 3.9 x 10(4) units/mg protein and a maximal enzymatic activity at lysosomal pH (pH 5.6), which was stable for over one month at 4 degrees C in artificial cerebrospinal fluid (CSF). We demonstrated that rhGNS was taken up by MPS IIID patient fibroblasts via the mannose 6-phosphate (M6P) receptor and reduced intracellular glycosaminoglycans to normal levels. The delivery of 5 mu g of rhGNS into the lateral cerebral ventricle of neonatal MPS IIID mice resulted in normalization of the enzymatic activity in brain tissues; rhGNS was found to be enriched in lysosomes in MPS IIID-treated mice relative to the control. Furthermore, a single dose of rhGNS was able to reduce the accumulated heparan sulfate and beta-hexosaminidase. Our results demonstrate that rhGNS delivered into CSF is a potential therapeutic option for MPS IIID that is worthy of further development.</abstract><cop>WASHINGTON</cop><pub>Amer Chemical Soc</pub><pmid>33320673</pmid><doi>10.1021/acs.molpharmaceut.0c00831</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2410-2186</orcidid><orcidid>https://orcid.org/0000-0002-5691-5790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1543-8384 |
ispartof | Molecular pharmaceutics, 2021-01, Vol.18 (1), p.214-227 |
issn | 1543-8384 1543-8392 |
language | eng |
recordid | cdi_webofscience_primary_000606803900016CitationCount |
source | MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Animals Animals, Newborn Brain - drug effects Brain - metabolism CHO Cells Cricetulus Disease Models, Animal Enzyme Replacement Therapy - methods Glycosaminoglycans - metabolism Heparitin Sulfate - metabolism Humans Life Sciences & Biomedicine Liver - drug effects Liver - metabolism Lysosomal Storage Diseases - drug therapy Lysosomal Storage Diseases - metabolism Lysosomes - drug effects Lysosomes - metabolism Medicine, Research & Experimental Mice Mucopolysaccharidosis III - drug therapy Mucopolysaccharidosis III - metabolism Neurons - drug effects Neurons - metabolism Pharmacology & Pharmacy Receptor, IGF Type 2 - metabolism Recombinant Proteins - pharmacology Research & Experimental Medicine Science & Technology Sulfatases - pharmacology |
title | Enzyme Replacement Therapy for Mucopolysaccharidosis IIID using Recombinant Human alpha-N-Acetylglucosamine-6-Sulfatase in Neonatal Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A41%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzyme%20Replacement%20Therapy%20for%20Mucopolysaccharidosis%20IIID%20using%20Recombinant%20Human%20alpha-N-Acetylglucosamine-6-Sulfatase%20in%20Neonatal%20Mice&rft.jtitle=Molecular%20pharmaceutics&rft.au=Wang,%20Feng&rft.date=2021-01-04&rft.volume=18&rft.issue=1&rft.spage=214&rft.epage=227&rft.pages=214-227&rft.issn=1543-8384&rft.eissn=1543-8392&rft_id=info:doi/10.1021/acs.molpharmaceut.0c00831&rft_dat=%3Cproquest_webof%3E2470626210%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470626210&rft_id=info:pmid/33320673&rfr_iscdi=true |