Analysis of the In Situ Crack Evolution Behavior in a Solid Solution Mg-13Gd-5Y-3Zn-0.3Zr Alloy

The low plasticity of high strength Mg-Gd-Y alloy has become the main obstacle to its application in engineering. In this paper, the origin, propagation and fracture processes of cracks of a solution of treated Mg-13Gd-5Y-3Zn-0.3Zr alloy were observed and studied with scanning electron microscopy (S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-12, Vol.14 (1), p.36, Article 36
Hauptverfasser: Yang, Yaqin, Mu, Chongli, Han, Zhongjian, Xu, Jian, Li, Baocheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 36
container_title Materials
container_volume 14
creator Yang, Yaqin
Mu, Chongli
Han, Zhongjian
Xu, Jian
Li, Baocheng
description The low plasticity of high strength Mg-Gd-Y alloy has become the main obstacle to its application in engineering. In this paper, the origin, propagation and fracture processes of cracks of a solution of treated Mg-13Gd-5Y-3Zn-0.3Zr alloy were observed and studied with scanning electron microscopy (SEM) in an in situ tensile test to provide theoretical references for the development of a new high-performance Mg-Gd-Y alloy. The results showed that there was still some bulk long period stacking order (LPSO) phase remaining in solid solution Mg-13Gd-5Y-3Zn-0.3Zr alloy. Most importantly, it was found that the locations of micro-cracks vary with the different solution treatment processes, mainly including the following three types. (1) At 480 x 10 h and 510 degrees C x 10 h, much bulk LPSO phase with higher elastic modulus remains in the alloy, which can lead to micro-cracks in the LPSO phase due to stress concentration. (2) At 510 degrees C x 13 h and 510 degrees C x 16 h, the phase structure of bulk LPSO changes, and the stress concentration easily appears at the LPSO/alpha-Mg interface, which leads to micro-cracks at the interface. (3) At 510 degrees C x 19 h and 510 degrees C x 22 h, the grain size increases, and the stress concentration is obvious at the grain boundary of coarse grains, which leads to the formation of micro-cracks.
doi_str_mv 10.3390/ma14010036
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000606123900001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473577411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-bc5db89330d2ab7c72201452aa4c233e6dd3a04ad55cdabcc2c62e88cf6a6df63</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS1ERaulF34AssQFgUJtT-IkF6QlKqVSKw6FA71Yju10Xbx2ayeL9t_jVcq2cGIOtqX55vlpHkKvKPkA0JKTtaQloYQAf4aOaNvygrZl-fzJ-xAdp3RLcgHQhrUv0CEA1CUFOEJi6aXbJptwGPC4Mvjc4ys7TriLUv3Ep5vgptEGjz-ZldzYELH1WOKr4KzenXPz8qagcKaL6kcB177I1q4jXjoXti_RwSBdMscP9wJ9_3z6rftSXHw9O--WF4UCXo1FryrdNy0A0Uz2taoZI7SsmJSlYgCGaw2SlFJXldKyV4opzkzTqIFLrgcOC_Rx1r2b-rXRyvgxSifuol3LuBVBWvF3x9uVuAkbUddtxfPPC_T2QSCG-8mkUaxtUsY56U2YkmBlDU3b1k2Z0Tf_oLdhinmPM1XVebc0U-9mSsWQUjTD3gwlYhedeIwuw6-f2t-jf4LKQDMDv0wfhqSs8crssZwtJ5yyrJqLdnaUu1y6MPkxj77__1H4DdDHsq4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473577411</pqid></control><display><type>article</type><title>Analysis of the In Situ Crack Evolution Behavior in a Solid Solution Mg-13Gd-5Y-3Zn-0.3Zr Alloy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Yaqin ; Mu, Chongli ; Han, Zhongjian ; Xu, Jian ; Li, Baocheng</creator><creatorcontrib>Yang, Yaqin ; Mu, Chongli ; Han, Zhongjian ; Xu, Jian ; Li, Baocheng</creatorcontrib><description>The low plasticity of high strength Mg-Gd-Y alloy has become the main obstacle to its application in engineering. In this paper, the origin, propagation and fracture processes of cracks of a solution of treated Mg-13Gd-5Y-3Zn-0.3Zr alloy were observed and studied with scanning electron microscopy (SEM) in an in situ tensile test to provide theoretical references for the development of a new high-performance Mg-Gd-Y alloy. The results showed that there was still some bulk long period stacking order (LPSO) phase remaining in solid solution Mg-13Gd-5Y-3Zn-0.3Zr alloy. Most importantly, it was found that the locations of micro-cracks vary with the different solution treatment processes, mainly including the following three types. (1) At 480 x 10 h and 510 degrees C x 10 h, much bulk LPSO phase with higher elastic modulus remains in the alloy, which can lead to micro-cracks in the LPSO phase due to stress concentration. (2) At 510 degrees C x 13 h and 510 degrees C x 16 h, the phase structure of bulk LPSO changes, and the stress concentration easily appears at the LPSO/alpha-Mg interface, which leads to micro-cracks at the interface. (3) At 510 degrees C x 19 h and 510 degrees C x 22 h, the grain size increases, and the stress concentration is obvious at the grain boundary of coarse grains, which leads to the formation of micro-cracks.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14010036</identifier><identifier>PMID: 33374133</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Bulk modulus ; Chemistry ; Chemistry, Physical ; Crack initiation ; Crack propagation ; Gadolinium ; Grain boundaries ; Grain size ; Heat resistance ; High strength alloys ; High temperature ; Magnesium alloys ; Magnesium base alloys ; Materials Science ; Materials Science, Multidisciplinary ; Mechanical properties ; Metallurgy &amp; Metallurgical Engineering ; Microcracks ; Modulus of elasticity ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; R&amp;D ; Research &amp; development ; Science &amp; Technology ; Solid phases ; Solid solutions ; Solution heat treatment ; Stress concentration ; Technology ; Tensile tests</subject><ispartof>Materials, 2020-12, Vol.14 (1), p.36, Article 36</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606123900001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c365t-bc5db89330d2ab7c72201452aa4c233e6dd3a04ad55cdabcc2c62e88cf6a6df63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795689/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795689/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33374133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yaqin</creatorcontrib><creatorcontrib>Mu, Chongli</creatorcontrib><creatorcontrib>Han, Zhongjian</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Li, Baocheng</creatorcontrib><title>Analysis of the In Situ Crack Evolution Behavior in a Solid Solution Mg-13Gd-5Y-3Zn-0.3Zr Alloy</title><title>Materials</title><addtitle>MATERIALS</addtitle><addtitle>Materials (Basel)</addtitle><description>The low plasticity of high strength Mg-Gd-Y alloy has become the main obstacle to its application in engineering. In this paper, the origin, propagation and fracture processes of cracks of a solution of treated Mg-13Gd-5Y-3Zn-0.3Zr alloy were observed and studied with scanning electron microscopy (SEM) in an in situ tensile test to provide theoretical references for the development of a new high-performance Mg-Gd-Y alloy. The results showed that there was still some bulk long period stacking order (LPSO) phase remaining in solid solution Mg-13Gd-5Y-3Zn-0.3Zr alloy. Most importantly, it was found that the locations of micro-cracks vary with the different solution treatment processes, mainly including the following three types. (1) At 480 x 10 h and 510 degrees C x 10 h, much bulk LPSO phase with higher elastic modulus remains in the alloy, which can lead to micro-cracks in the LPSO phase due to stress concentration. (2) At 510 degrees C x 13 h and 510 degrees C x 16 h, the phase structure of bulk LPSO changes, and the stress concentration easily appears at the LPSO/alpha-Mg interface, which leads to micro-cracks at the interface. (3) At 510 degrees C x 19 h and 510 degrees C x 22 h, the grain size increases, and the stress concentration is obvious at the grain boundary of coarse grains, which leads to the formation of micro-cracks.</description><subject>Bulk modulus</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Gadolinium</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat resistance</subject><subject>High strength alloys</subject><subject>High temperature</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mechanical properties</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Microcracks</subject><subject>Modulus of elasticity</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Science &amp; Technology</subject><subject>Solid phases</subject><subject>Solid solutions</subject><subject>Solution heat treatment</subject><subject>Stress concentration</subject><subject>Technology</subject><subject>Tensile tests</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkUFv1DAQhS1ERaulF34AssQFgUJtT-IkF6QlKqVSKw6FA71Yju10Xbx2ayeL9t_jVcq2cGIOtqX55vlpHkKvKPkA0JKTtaQloYQAf4aOaNvygrZl-fzJ-xAdp3RLcgHQhrUv0CEA1CUFOEJi6aXbJptwGPC4Mvjc4ys7TriLUv3Ep5vgptEGjz-ZldzYELH1WOKr4KzenXPz8qagcKaL6kcB177I1q4jXjoXti_RwSBdMscP9wJ9_3z6rftSXHw9O--WF4UCXo1FryrdNy0A0Uz2taoZI7SsmJSlYgCGaw2SlFJXldKyV4opzkzTqIFLrgcOC_Rx1r2b-rXRyvgxSifuol3LuBVBWvF3x9uVuAkbUddtxfPPC_T2QSCG-8mkUaxtUsY56U2YkmBlDU3b1k2Z0Tf_oLdhinmPM1XVebc0U-9mSsWQUjTD3gwlYhedeIwuw6-f2t-jf4LKQDMDv0wfhqSs8crssZwtJ5yyrJqLdnaUu1y6MPkxj77__1H4DdDHsq4</recordid><startdate>20201224</startdate><enddate>20201224</enddate><creator>Yang, Yaqin</creator><creator>Mu, Chongli</creator><creator>Han, Zhongjian</creator><creator>Xu, Jian</creator><creator>Li, Baocheng</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201224</creationdate><title>Analysis of the In Situ Crack Evolution Behavior in a Solid Solution Mg-13Gd-5Y-3Zn-0.3Zr Alloy</title><author>Yang, Yaqin ; Mu, Chongli ; Han, Zhongjian ; Xu, Jian ; Li, Baocheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-bc5db89330d2ab7c72201452aa4c233e6dd3a04ad55cdabcc2c62e88cf6a6df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bulk modulus</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Gadolinium</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat resistance</topic><topic>High strength alloys</topic><topic>High temperature</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mechanical properties</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Microcracks</topic><topic>Modulus of elasticity</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Science &amp; Technology</topic><topic>Solid phases</topic><topic>Solid solutions</topic><topic>Solution heat treatment</topic><topic>Stress concentration</topic><topic>Technology</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yaqin</creatorcontrib><creatorcontrib>Mu, Chongli</creatorcontrib><creatorcontrib>Han, Zhongjian</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Li, Baocheng</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yaqin</au><au>Mu, Chongli</au><au>Han, Zhongjian</au><au>Xu, Jian</au><au>Li, Baocheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the In Situ Crack Evolution Behavior in a Solid Solution Mg-13Gd-5Y-3Zn-0.3Zr Alloy</atitle><jtitle>Materials</jtitle><stitle>MATERIALS</stitle><addtitle>Materials (Basel)</addtitle><date>2020-12-24</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>36</spage><pages>36-</pages><artnum>36</artnum><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The low plasticity of high strength Mg-Gd-Y alloy has become the main obstacle to its application in engineering. In this paper, the origin, propagation and fracture processes of cracks of a solution of treated Mg-13Gd-5Y-3Zn-0.3Zr alloy were observed and studied with scanning electron microscopy (SEM) in an in situ tensile test to provide theoretical references for the development of a new high-performance Mg-Gd-Y alloy. The results showed that there was still some bulk long period stacking order (LPSO) phase remaining in solid solution Mg-13Gd-5Y-3Zn-0.3Zr alloy. Most importantly, it was found that the locations of micro-cracks vary with the different solution treatment processes, mainly including the following three types. (1) At 480 x 10 h and 510 degrees C x 10 h, much bulk LPSO phase with higher elastic modulus remains in the alloy, which can lead to micro-cracks in the LPSO phase due to stress concentration. (2) At 510 degrees C x 13 h and 510 degrees C x 16 h, the phase structure of bulk LPSO changes, and the stress concentration easily appears at the LPSO/alpha-Mg interface, which leads to micro-cracks at the interface. (3) At 510 degrees C x 19 h and 510 degrees C x 22 h, the grain size increases, and the stress concentration is obvious at the grain boundary of coarse grains, which leads to the formation of micro-cracks.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33374133</pmid><doi>10.3390/ma14010036</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-12, Vol.14 (1), p.36, Article 36
issn 1996-1944
1996-1944
language eng
recordid cdi_webofscience_primary_000606123900001CitationCount
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bulk modulus
Chemistry
Chemistry, Physical
Crack initiation
Crack propagation
Gadolinium
Grain boundaries
Grain size
Heat resistance
High strength alloys
High temperature
Magnesium alloys
Magnesium base alloys
Materials Science
Materials Science, Multidisciplinary
Mechanical properties
Metallurgy & Metallurgical Engineering
Microcracks
Modulus of elasticity
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
R&D
Research & development
Science & Technology
Solid phases
Solid solutions
Solution heat treatment
Stress concentration
Technology
Tensile tests
title Analysis of the In Situ Crack Evolution Behavior in a Solid Solution Mg-13Gd-5Y-3Zn-0.3Zr Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T10%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20In%20Situ%20Crack%20Evolution%20Behavior%20in%20a%20Solid%20Solution%20Mg-13Gd-5Y-3Zn-0.3Zr%20Alloy&rft.jtitle=Materials&rft.au=Yang,%20Yaqin&rft.date=2020-12-24&rft.volume=14&rft.issue=1&rft.spage=36&rft.pages=36-&rft.artnum=36&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14010036&rft_dat=%3Cproquest_webof%3E2473577411%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473577411&rft_id=info:pmid/33374133&rfr_iscdi=true