Transcriptomic Changes of Murine Visceral Fat Exposed to Intermittent Hypoxia at Single Cell Resolution

Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA) and induces metabolic dysfunction manifesting as inflammation, increased lipolysis and insulin resistance in visceral white adipose tissues (vWAT). However, the cell types and their corresponding transcriptional pathways underl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-12, Vol.22 (1), p.261, Article 261
Hauptverfasser: Khalyfa, Abdelnaby, Warren, Wesley, Andrade, Jorge, Bottoms, Christopher A., Rice, Edward S., Cortese, Rene, Kheirandish-Gozal, Leila, Gozal, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 261
container_title International journal of molecular sciences
container_volume 22
creator Khalyfa, Abdelnaby
Warren, Wesley
Andrade, Jorge
Bottoms, Christopher A.
Rice, Edward S.
Cortese, Rene
Kheirandish-Gozal, Leila
Gozal, David
description Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA) and induces metabolic dysfunction manifesting as inflammation, increased lipolysis and insulin resistance in visceral white adipose tissues (vWAT). However, the cell types and their corresponding transcriptional pathways underlying these functional perturbations are unknown. Here, we applied single nucleus RNA sequencing (snRNA-seq) coupled with aggregate RNA-seq methods to evaluate the cellular heterogeneity in vWAT following IH exposures mimicking OSA. C57BL/6 male mice were exposed to IH and room air (RA) for 6 weeks, and nuclei from vWAT were isolated and processed for snRNA-seq followed by differential expressed gene (DEGs) analyses by cell type, along with gene ontology and canonical pathways enrichment tests of significance. IH induced significant transcriptional changes compared to RA across 14 different cell types identified in vWAT. We identified cell-specific signature markers, transcriptional networks, metabolic signaling pathways, and cellular subpopulation enrichment in vWAT. Globally, we also identify 298 common regulated genes across multiple cellular types that are associated with metabolic pathways. Deconvolution of cell types in vWAT using global RNA-seq revealed that distinct adipocytes appear to be differentially implicated in key aspects of metabolic dysfunction. Thus, the heterogeneity of vWAT and its response to IH at the cellular level provides important insights into the metabolic morbidity of OSA and may possibly translate into therapeutic targets.
doi_str_mv 10.3390/ijms22010261
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000606089100001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_666aef3d1b384670bdbd4d96412df62c</doaj_id><sourcerecordid>2474499896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-783f31b39ec544e41cc714798241eaa9e865bf8cfb946ffd1045d3aaa1a5ef003</originalsourceid><addsrcrecordid>eNqNks9vFCEUgCdGY2v15tmQeDHRVRgYBi4mZtLaTWpMtHolDPPYspmBLTDa_vey3brZejIceIEvH7wfVfWS4PeUSvzBradU15jgmpNH1TFhdb3AmLePD-Kj6llKa4xrWjfyaXVEKRVUCHpcrS6j9slEt8lhcgZ1V9qvIKFg0Zc5Og_op0sGoh7Rmc7o9GYTEgwoB7T0GeLkcgaf0fntJtw4jQry3fnVCKiDcUTfIIVxzi7459UTq8cEL-73k-rH2elld764-Pp52X26WBjWirxoBbWU9FSCaRgDRoxpCWulqBkBrSUI3vRWGNtLxq0dCGbNQLXWRDdgMaYn1XLnHYJeq010k463Kmin7g5CXCkdszMjKM65BkuH8pxgvMX90A9skJyRerC8NsX1cefazP0EgymJljo8kD688e5KrcIv1bay4UQWwZt7QQzXM6Sspm0xx1F7CHNSNWsZk1JIXtDX_6DrMEdfSnVHtQ0jXBTq3Y4yMaQUwe4_Q7DaToM6nIaCvzpMYA__bX8B3u6A39AHm4wDb2CP4TI6ZQlJSoS3OvH_dOey3ja-C7PP9A8t7dJs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474754168</pqid></control><display><type>article</type><title>Transcriptomic Changes of Murine Visceral Fat Exposed to Intermittent Hypoxia at Single Cell Resolution</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Khalyfa, Abdelnaby ; Warren, Wesley ; Andrade, Jorge ; Bottoms, Christopher A. ; Rice, Edward S. ; Cortese, Rene ; Kheirandish-Gozal, Leila ; Gozal, David</creator><creatorcontrib>Khalyfa, Abdelnaby ; Warren, Wesley ; Andrade, Jorge ; Bottoms, Christopher A. ; Rice, Edward S. ; Cortese, Rene ; Kheirandish-Gozal, Leila ; Gozal, David</creatorcontrib><description>Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA) and induces metabolic dysfunction manifesting as inflammation, increased lipolysis and insulin resistance in visceral white adipose tissues (vWAT). However, the cell types and their corresponding transcriptional pathways underlying these functional perturbations are unknown. Here, we applied single nucleus RNA sequencing (snRNA-seq) coupled with aggregate RNA-seq methods to evaluate the cellular heterogeneity in vWAT following IH exposures mimicking OSA. C57BL/6 male mice were exposed to IH and room air (RA) for 6 weeks, and nuclei from vWAT were isolated and processed for snRNA-seq followed by differential expressed gene (DEGs) analyses by cell type, along with gene ontology and canonical pathways enrichment tests of significance. IH induced significant transcriptional changes compared to RA across 14 different cell types identified in vWAT. We identified cell-specific signature markers, transcriptional networks, metabolic signaling pathways, and cellular subpopulation enrichment in vWAT. Globally, we also identify 298 common regulated genes across multiple cellular types that are associated with metabolic pathways. Deconvolution of cell types in vWAT using global RNA-seq revealed that distinct adipocytes appear to be differentially implicated in key aspects of metabolic dysfunction. Thus, the heterogeneity of vWAT and its response to IH at the cellular level provides important insights into the metabolic morbidity of OSA and may possibly translate into therapeutic targets.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22010261</identifier><identifier>PMID: 33383883</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adipocytes ; Adipocytes - metabolism ; Adipose tissue ; Animals ; Apnea ; Biochemistry &amp; Molecular Biology ; bulk RNA-seq ; Cancer ; Chemistry ; Chemistry, Multidisciplinary ; Computational Biology - methods ; Expected values ; Exposure ; Fibroblasts ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Ontology ; Heterogeneity ; High-Throughput Nucleotide Sequencing ; Hypoxia ; Hypoxia - metabolism ; Inflammation ; Insulin ; Insulin resistance ; intermittent hypoxia ; Intra-Abdominal Fat - metabolism ; Kinases ; Life Sciences &amp; Biomedicine ; Lipolysis ; Metabolic pathways ; Metabolism ; Mice ; Mimicry ; Molecular Sequence Annotation ; Morbidity ; Nuclei ; Ontology ; OSA ; Physical Sciences ; RNA, Small Untranslated ; Science &amp; Technology ; single cell ; Single-Cell Analysis ; Sleep apnea ; Sleep disorders ; Smooth muscle ; snRNA ; snRNA-seq ; T cell receptors ; Transcription ; Transcriptome</subject><ispartof>International journal of molecular sciences, 2020-12, Vol.22 (1), p.261, Article 261</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>6</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606089100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-783f31b39ec544e41cc714798241eaa9e865bf8cfb946ffd1045d3aaa1a5ef003</citedby><cites>FETCH-LOGICAL-c478t-783f31b39ec544e41cc714798241eaa9e865bf8cfb946ffd1045d3aaa1a5ef003</cites><orcidid>0000-0002-5811-5148 ; 0000-0001-8195-6036 ; 0000-0001-9262-7828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795619/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795619/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33383883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalyfa, Abdelnaby</creatorcontrib><creatorcontrib>Warren, Wesley</creatorcontrib><creatorcontrib>Andrade, Jorge</creatorcontrib><creatorcontrib>Bottoms, Christopher A.</creatorcontrib><creatorcontrib>Rice, Edward S.</creatorcontrib><creatorcontrib>Cortese, Rene</creatorcontrib><creatorcontrib>Kheirandish-Gozal, Leila</creatorcontrib><creatorcontrib>Gozal, David</creatorcontrib><title>Transcriptomic Changes of Murine Visceral Fat Exposed to Intermittent Hypoxia at Single Cell Resolution</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA) and induces metabolic dysfunction manifesting as inflammation, increased lipolysis and insulin resistance in visceral white adipose tissues (vWAT). However, the cell types and their corresponding transcriptional pathways underlying these functional perturbations are unknown. Here, we applied single nucleus RNA sequencing (snRNA-seq) coupled with aggregate RNA-seq methods to evaluate the cellular heterogeneity in vWAT following IH exposures mimicking OSA. C57BL/6 male mice were exposed to IH and room air (RA) for 6 weeks, and nuclei from vWAT were isolated and processed for snRNA-seq followed by differential expressed gene (DEGs) analyses by cell type, along with gene ontology and canonical pathways enrichment tests of significance. IH induced significant transcriptional changes compared to RA across 14 different cell types identified in vWAT. We identified cell-specific signature markers, transcriptional networks, metabolic signaling pathways, and cellular subpopulation enrichment in vWAT. Globally, we also identify 298 common regulated genes across multiple cellular types that are associated with metabolic pathways. Deconvolution of cell types in vWAT using global RNA-seq revealed that distinct adipocytes appear to be differentially implicated in key aspects of metabolic dysfunction. Thus, the heterogeneity of vWAT and its response to IH at the cellular level provides important insights into the metabolic morbidity of OSA and may possibly translate into therapeutic targets.</description><subject>Adipocytes</subject><subject>Adipocytes - metabolism</subject><subject>Adipose tissue</subject><subject>Animals</subject><subject>Apnea</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>bulk RNA-seq</subject><subject>Cancer</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Computational Biology - methods</subject><subject>Expected values</subject><subject>Exposure</subject><subject>Fibroblasts</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene Ontology</subject><subject>Heterogeneity</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>intermittent hypoxia</subject><subject>Intra-Abdominal Fat - metabolism</subject><subject>Kinases</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lipolysis</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mimicry</subject><subject>Molecular Sequence Annotation</subject><subject>Morbidity</subject><subject>Nuclei</subject><subject>Ontology</subject><subject>OSA</subject><subject>Physical Sciences</subject><subject>RNA, Small Untranslated</subject><subject>Science &amp; Technology</subject><subject>single cell</subject><subject>Single-Cell Analysis</subject><subject>Sleep apnea</subject><subject>Sleep disorders</subject><subject>Smooth muscle</subject><subject>snRNA</subject><subject>snRNA-seq</subject><subject>T cell receptors</subject><subject>Transcription</subject><subject>Transcriptome</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9vFCEUgCdGY2v15tmQeDHRVRgYBi4mZtLaTWpMtHolDPPYspmBLTDa_vey3brZejIceIEvH7wfVfWS4PeUSvzBradU15jgmpNH1TFhdb3AmLePD-Kj6llKa4xrWjfyaXVEKRVUCHpcrS6j9slEt8lhcgZ1V9qvIKFg0Zc5Og_op0sGoh7Rmc7o9GYTEgwoB7T0GeLkcgaf0fntJtw4jQry3fnVCKiDcUTfIIVxzi7459UTq8cEL-73k-rH2elld764-Pp52X26WBjWirxoBbWU9FSCaRgDRoxpCWulqBkBrSUI3vRWGNtLxq0dCGbNQLXWRDdgMaYn1XLnHYJeq010k463Kmin7g5CXCkdszMjKM65BkuH8pxgvMX90A9skJyRerC8NsX1cefazP0EgymJljo8kD688e5KrcIv1bay4UQWwZt7QQzXM6Sspm0xx1F7CHNSNWsZk1JIXtDX_6DrMEdfSnVHtQ0jXBTq3Y4yMaQUwe4_Q7DaToM6nIaCvzpMYA__bX8B3u6A39AHm4wDb2CP4TI6ZQlJSoS3OvH_dOey3ja-C7PP9A8t7dJs</recordid><startdate>20201229</startdate><enddate>20201229</enddate><creator>Khalyfa, Abdelnaby</creator><creator>Warren, Wesley</creator><creator>Andrade, Jorge</creator><creator>Bottoms, Christopher A.</creator><creator>Rice, Edward S.</creator><creator>Cortese, Rene</creator><creator>Kheirandish-Gozal, Leila</creator><creator>Gozal, David</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5811-5148</orcidid><orcidid>https://orcid.org/0000-0001-8195-6036</orcidid><orcidid>https://orcid.org/0000-0001-9262-7828</orcidid></search><sort><creationdate>20201229</creationdate><title>Transcriptomic Changes of Murine Visceral Fat Exposed to Intermittent Hypoxia at Single Cell Resolution</title><author>Khalyfa, Abdelnaby ; Warren, Wesley ; Andrade, Jorge ; Bottoms, Christopher A. ; Rice, Edward S. ; Cortese, Rene ; Kheirandish-Gozal, Leila ; Gozal, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-783f31b39ec544e41cc714798241eaa9e865bf8cfb946ffd1045d3aaa1a5ef003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adipocytes</topic><topic>Adipocytes - metabolism</topic><topic>Adipose tissue</topic><topic>Animals</topic><topic>Apnea</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>bulk RNA-seq</topic><topic>Cancer</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Computational Biology - methods</topic><topic>Expected values</topic><topic>Exposure</topic><topic>Fibroblasts</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene Ontology</topic><topic>Heterogeneity</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>intermittent hypoxia</topic><topic>Intra-Abdominal Fat - metabolism</topic><topic>Kinases</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lipolysis</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mimicry</topic><topic>Molecular Sequence Annotation</topic><topic>Morbidity</topic><topic>Nuclei</topic><topic>Ontology</topic><topic>OSA</topic><topic>Physical Sciences</topic><topic>RNA, Small Untranslated</topic><topic>Science &amp; Technology</topic><topic>single cell</topic><topic>Single-Cell Analysis</topic><topic>Sleep apnea</topic><topic>Sleep disorders</topic><topic>Smooth muscle</topic><topic>snRNA</topic><topic>snRNA-seq</topic><topic>T cell receptors</topic><topic>Transcription</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalyfa, Abdelnaby</creatorcontrib><creatorcontrib>Warren, Wesley</creatorcontrib><creatorcontrib>Andrade, Jorge</creatorcontrib><creatorcontrib>Bottoms, Christopher A.</creatorcontrib><creatorcontrib>Rice, Edward S.</creatorcontrib><creatorcontrib>Cortese, Rene</creatorcontrib><creatorcontrib>Kheirandish-Gozal, Leila</creatorcontrib><creatorcontrib>Gozal, David</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalyfa, Abdelnaby</au><au>Warren, Wesley</au><au>Andrade, Jorge</au><au>Bottoms, Christopher A.</au><au>Rice, Edward S.</au><au>Cortese, Rene</au><au>Kheirandish-Gozal, Leila</au><au>Gozal, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomic Changes of Murine Visceral Fat Exposed to Intermittent Hypoxia at Single Cell Resolution</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2020-12-29</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>261</spage><pages>261-</pages><artnum>261</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA) and induces metabolic dysfunction manifesting as inflammation, increased lipolysis and insulin resistance in visceral white adipose tissues (vWAT). However, the cell types and their corresponding transcriptional pathways underlying these functional perturbations are unknown. Here, we applied single nucleus RNA sequencing (snRNA-seq) coupled with aggregate RNA-seq methods to evaluate the cellular heterogeneity in vWAT following IH exposures mimicking OSA. C57BL/6 male mice were exposed to IH and room air (RA) for 6 weeks, and nuclei from vWAT were isolated and processed for snRNA-seq followed by differential expressed gene (DEGs) analyses by cell type, along with gene ontology and canonical pathways enrichment tests of significance. IH induced significant transcriptional changes compared to RA across 14 different cell types identified in vWAT. We identified cell-specific signature markers, transcriptional networks, metabolic signaling pathways, and cellular subpopulation enrichment in vWAT. Globally, we also identify 298 common regulated genes across multiple cellular types that are associated with metabolic pathways. Deconvolution of cell types in vWAT using global RNA-seq revealed that distinct adipocytes appear to be differentially implicated in key aspects of metabolic dysfunction. Thus, the heterogeneity of vWAT and its response to IH at the cellular level provides important insights into the metabolic morbidity of OSA and may possibly translate into therapeutic targets.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33383883</pmid><doi>10.3390/ijms22010261</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5811-5148</orcidid><orcidid>https://orcid.org/0000-0001-8195-6036</orcidid><orcidid>https://orcid.org/0000-0001-9262-7828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-12, Vol.22 (1), p.261, Article 261
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_webofscience_primary_000606089100001CitationCount
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Adipocytes
Adipocytes - metabolism
Adipose tissue
Animals
Apnea
Biochemistry & Molecular Biology
bulk RNA-seq
Cancer
Chemistry
Chemistry, Multidisciplinary
Computational Biology - methods
Expected values
Exposure
Fibroblasts
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Gene Ontology
Heterogeneity
High-Throughput Nucleotide Sequencing
Hypoxia
Hypoxia - metabolism
Inflammation
Insulin
Insulin resistance
intermittent hypoxia
Intra-Abdominal Fat - metabolism
Kinases
Life Sciences & Biomedicine
Lipolysis
Metabolic pathways
Metabolism
Mice
Mimicry
Molecular Sequence Annotation
Morbidity
Nuclei
Ontology
OSA
Physical Sciences
RNA, Small Untranslated
Science & Technology
single cell
Single-Cell Analysis
Sleep apnea
Sleep disorders
Smooth muscle
snRNA
snRNA-seq
T cell receptors
Transcription
Transcriptome
title Transcriptomic Changes of Murine Visceral Fat Exposed to Intermittent Hypoxia at Single Cell Resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomic%20Changes%20of%20Murine%20Visceral%20Fat%20Exposed%20to%20Intermittent%20Hypoxia%20at%20Single%20Cell%20Resolution&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Khalyfa,%20Abdelnaby&rft.date=2020-12-29&rft.volume=22&rft.issue=1&rft.spage=261&rft.pages=261-&rft.artnum=261&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22010261&rft_dat=%3Cproquest_webof%3E2474499896%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474754168&rft_id=info:pmid/33383883&rft_doaj_id=oai_doaj_org_article_666aef3d1b384670bdbd4d96412df62c&rfr_iscdi=true