Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence

Abstract Transcriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2020-12, Vol.48 (21), p.12085-12101
Hauptverfasser: Allmann, Sebastian, Mayer, Laura, Olma, Jessika, Kaina, Bernd, Hofmann, Thomas G, Tomicic, Maja T, Christmann, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12101
container_issue 21
container_start_page 12085
container_title Nucleic acids research
container_volume 48
creator Allmann, Sebastian
Mayer, Laura
Olma, Jessika
Kaina, Bernd
Hofmann, Thomas G
Tomicic, Maja T
Christmann, Markus
description Abstract Transcriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-mediated transcription and silencing of repair genes is further mediated by the p21-dependent E2F4/DREAM complex. Notably, repression of DNA repair is also observed following exposure to the active B[a]P metabolite BPDE and upon ionizing radiation and occurs in response to a p53/p21-triggered, irreversible cell cycle arrest marking the onset of cellular senescence. Overall, our results suggest that repression of MMR and HR is an early event during genotoxic-stress induced senescence. We propose that persistent downregulation of DNA repair might play a role in the maintenance of the senescence phenotype, which is associated with an accumulation of unrepairable DNA lesions.
doi_str_mv 10.1093/nar/gkaa965
format Article
fullrecord <record><control><sourceid>oup_webof</sourceid><recordid>TN_cdi_webofscience_primary_000606018700026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkaa965</oup_id><sourcerecordid>10.1093/nar/gkaa965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-910cc0bfcd2b4d569ac4a023efd60469c1a1f654fde389d914ec79c2cb66a3c33</originalsourceid><addsrcrecordid>eNqNUc-P1CAUJkbjzq6evBtOXkwdKJQpF5N13FWTjV70ZEzzCq8d3A400K6Z_Qf8t2WcddSLMSSPR_h-8PgIecLZC860WHqIy_4aQKvqHllwocpCalXeJwsmWFVwJusTcprSV8a45JV8SE6E4EoJrRfk-yv0t-EzfBl3ET3SiGPElDDR1-_P9ydwkU6bGOZ-Q2GYMKKlF-UlX-YiaTd7M7ng6RbitfM9BU8R4rCjeIN-os7_1LGwhR4L5-1sMt_gMMwDRJqyZTLoDT4iDzoYEj6-28_Ip8uLj-u3xdWHN-_W51eFEbKcCs2ZMaztjC1baSulwUhgpcDOKiaVNhx4pyrZWRS1tppLNCttStMqBcIIcUZeHnTHud2izd5ThKEZo8sT7JoArvn7xrtN04ebZrViNat0Fnh-EDAxpBSxO3I5a_Z5NDmP5i6PjH76p90R-yuA33LfsA1dMm7_GUcYY0zlxetV7kqV0fX_o9dugn026zD7KVOfHahhHv_55B8Ij7iP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>DOAJ开放获取期刊资源库</source><creator>Allmann, Sebastian ; Mayer, Laura ; Olma, Jessika ; Kaina, Bernd ; Hofmann, Thomas G ; Tomicic, Maja T ; Christmann, Markus</creator><creatorcontrib>Allmann, Sebastian ; Mayer, Laura ; Olma, Jessika ; Kaina, Bernd ; Hofmann, Thomas G ; Tomicic, Maja T ; Christmann, Markus</creatorcontrib><description>Abstract Transcriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-mediated transcription and silencing of repair genes is further mediated by the p21-dependent E2F4/DREAM complex. Notably, repression of DNA repair is also observed following exposure to the active B[a]P metabolite BPDE and upon ionizing radiation and occurs in response to a p53/p21-triggered, irreversible cell cycle arrest marking the onset of cellular senescence. Overall, our results suggest that repression of MMR and HR is an early event during genotoxic-stress induced senescence. We propose that persistent downregulation of DNA repair might play a role in the maintenance of the senescence phenotype, which is associated with an accumulation of unrepairable DNA lesions.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkaa965</identifier><identifier>PMID: 33166399</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Benzo(a)pyrene - toxicity ; Biochemistry &amp; Molecular Biology ; Carcinogens - toxicity ; Cell Cycle Checkpoints ; Cell Line, Transformed ; Cell Line, Tumor ; Cellular Senescence - genetics ; Cyclin-Dependent Kinase Inhibitor p21 - genetics ; Cyclin-Dependent Kinase Inhibitor p21 - metabolism ; DNA - genetics ; DNA - metabolism ; DNA Damage ; DNA Mismatch Repair - drug effects ; DNA Mismatch Repair - radiation effects ; DNA Repair Enzymes - genetics ; DNA Repair Enzymes - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; E2F1 Transcription Factor - genetics ; E2F1 Transcription Factor - metabolism ; E2F4 Transcription Factor - genetics ; E2F4 Transcription Factor - metabolism ; Epithelial Cells - cytology ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Epithelial Cells - radiation effects ; Exodeoxyribonucleases - genetics ; Exodeoxyribonucleases - metabolism ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Fibroblasts - radiation effects ; Gamma Rays ; Gene regulation, Chromatin and Epigenetics ; Humans ; Kv Channel-Interacting Proteins - genetics ; Kv Channel-Interacting Proteins - metabolism ; Life Sciences &amp; Biomedicine ; MCF-7 Cells ; MutS Homolog 2 Protein - genetics ; MutS Homolog 2 Protein - metabolism ; Rad51 Recombinase - genetics ; Rad51 Recombinase - metabolism ; Recombinational DNA Repair - drug effects ; Recombinational DNA Repair - radiation effects ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Science &amp; Technology ; Signal Transduction</subject><ispartof>Nucleic acids research, 2020-12, Vol.48 (21), p.12085-12101</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>22</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000606018700026</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c342t-910cc0bfcd2b4d569ac4a023efd60469c1a1f654fde389d914ec79c2cb66a3c33</citedby><cites>FETCH-LOGICAL-c342t-910cc0bfcd2b4d569ac4a023efd60469c1a1f654fde389d914ec79c2cb66a3c33</cites><orcidid>0000-0001-9289-4168 ; 0000-0002-9672-231X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708059/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708059/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1605,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33166399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allmann, Sebastian</creatorcontrib><creatorcontrib>Mayer, Laura</creatorcontrib><creatorcontrib>Olma, Jessika</creatorcontrib><creatorcontrib>Kaina, Bernd</creatorcontrib><creatorcontrib>Hofmann, Thomas G</creatorcontrib><creatorcontrib>Tomicic, Maja T</creatorcontrib><creatorcontrib>Christmann, Markus</creatorcontrib><title>Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence</title><title>Nucleic acids research</title><addtitle>NUCLEIC ACIDS RES</addtitle><addtitle>Nucleic Acids Res</addtitle><description>Abstract Transcriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-mediated transcription and silencing of repair genes is further mediated by the p21-dependent E2F4/DREAM complex. Notably, repression of DNA repair is also observed following exposure to the active B[a]P metabolite BPDE and upon ionizing radiation and occurs in response to a p53/p21-triggered, irreversible cell cycle arrest marking the onset of cellular senescence. Overall, our results suggest that repression of MMR and HR is an early event during genotoxic-stress induced senescence. We propose that persistent downregulation of DNA repair might play a role in the maintenance of the senescence phenotype, which is associated with an accumulation of unrepairable DNA lesions.</description><subject>Benzo(a)pyrene - toxicity</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Carcinogens - toxicity</subject><subject>Cell Cycle Checkpoints</subject><subject>Cell Line, Transformed</subject><subject>Cell Line, Tumor</subject><subject>Cellular Senescence - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - genetics</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Damage</subject><subject>DNA Mismatch Repair - drug effects</subject><subject>DNA Mismatch Repair - radiation effects</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>E2F1 Transcription Factor - genetics</subject><subject>E2F1 Transcription Factor - metabolism</subject><subject>E2F4 Transcription Factor - genetics</subject><subject>E2F4 Transcription Factor - metabolism</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial Cells - radiation effects</subject><subject>Exodeoxyribonucleases - genetics</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - radiation effects</subject><subject>Gamma Rays</subject><subject>Gene regulation, Chromatin and Epigenetics</subject><subject>Humans</subject><subject>Kv Channel-Interacting Proteins - genetics</subject><subject>Kv Channel-Interacting Proteins - metabolism</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>MCF-7 Cells</subject><subject>MutS Homolog 2 Protein - genetics</subject><subject>MutS Homolog 2 Protein - metabolism</subject><subject>Rad51 Recombinase - genetics</subject><subject>Rad51 Recombinase - metabolism</subject><subject>Recombinational DNA Repair - drug effects</subject><subject>Recombinational DNA Repair - radiation effects</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Science &amp; Technology</subject><subject>Signal Transduction</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNUc-P1CAUJkbjzq6evBtOXkwdKJQpF5N13FWTjV70ZEzzCq8d3A400K6Z_Qf8t2WcddSLMSSPR_h-8PgIecLZC860WHqIy_4aQKvqHllwocpCalXeJwsmWFVwJusTcprSV8a45JV8SE6E4EoJrRfk-yv0t-EzfBl3ET3SiGPElDDR1-_P9ydwkU6bGOZ-Q2GYMKKlF-UlX-YiaTd7M7ng6RbitfM9BU8R4rCjeIN-os7_1LGwhR4L5-1sMt_gMMwDRJqyZTLoDT4iDzoYEj6-28_Ip8uLj-u3xdWHN-_W51eFEbKcCs2ZMaztjC1baSulwUhgpcDOKiaVNhx4pyrZWRS1tppLNCttStMqBcIIcUZeHnTHud2izd5ThKEZo8sT7JoArvn7xrtN04ebZrViNat0Fnh-EDAxpBSxO3I5a_Z5NDmP5i6PjH76p90R-yuA33LfsA1dMm7_GUcYY0zlxetV7kqV0fX_o9dugn026zD7KVOfHahhHv_55B8Ij7iP</recordid><startdate>20201202</startdate><enddate>20201202</enddate><creator>Allmann, Sebastian</creator><creator>Mayer, Laura</creator><creator>Olma, Jessika</creator><creator>Kaina, Bernd</creator><creator>Hofmann, Thomas G</creator><creator>Tomicic, Maja T</creator><creator>Christmann, Markus</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>TOX</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9289-4168</orcidid><orcidid>https://orcid.org/0000-0002-9672-231X</orcidid></search><sort><creationdate>20201202</creationdate><title>Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence</title><author>Allmann, Sebastian ; Mayer, Laura ; Olma, Jessika ; Kaina, Bernd ; Hofmann, Thomas G ; Tomicic, Maja T ; Christmann, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-910cc0bfcd2b4d569ac4a023efd60469c1a1f654fde389d914ec79c2cb66a3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benzo(a)pyrene - toxicity</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Carcinogens - toxicity</topic><topic>Cell Cycle Checkpoints</topic><topic>Cell Line, Transformed</topic><topic>Cell Line, Tumor</topic><topic>Cellular Senescence - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - genetics</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Damage</topic><topic>DNA Mismatch Repair - drug effects</topic><topic>DNA Mismatch Repair - radiation effects</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>E2F1 Transcription Factor - genetics</topic><topic>E2F1 Transcription Factor - metabolism</topic><topic>E2F4 Transcription Factor - genetics</topic><topic>E2F4 Transcription Factor - metabolism</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial Cells - radiation effects</topic><topic>Exodeoxyribonucleases - genetics</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - radiation effects</topic><topic>Gamma Rays</topic><topic>Gene regulation, Chromatin and Epigenetics</topic><topic>Humans</topic><topic>Kv Channel-Interacting Proteins - genetics</topic><topic>Kv Channel-Interacting Proteins - metabolism</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>MCF-7 Cells</topic><topic>MutS Homolog 2 Protein - genetics</topic><topic>MutS Homolog 2 Protein - metabolism</topic><topic>Rad51 Recombinase - genetics</topic><topic>Rad51 Recombinase - metabolism</topic><topic>Recombinational DNA Repair - drug effects</topic><topic>Recombinational DNA Repair - radiation effects</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Science &amp; Technology</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allmann, Sebastian</creatorcontrib><creatorcontrib>Mayer, Laura</creatorcontrib><creatorcontrib>Olma, Jessika</creatorcontrib><creatorcontrib>Kaina, Bernd</creatorcontrib><creatorcontrib>Hofmann, Thomas G</creatorcontrib><creatorcontrib>Tomicic, Maja T</creatorcontrib><creatorcontrib>Christmann, Markus</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allmann, Sebastian</au><au>Mayer, Laura</au><au>Olma, Jessika</au><au>Kaina, Bernd</au><au>Hofmann, Thomas G</au><au>Tomicic, Maja T</au><au>Christmann, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence</atitle><jtitle>Nucleic acids research</jtitle><stitle>NUCLEIC ACIDS RES</stitle><addtitle>Nucleic Acids Res</addtitle><date>2020-12-02</date><risdate>2020</risdate><volume>48</volume><issue>21</issue><spage>12085</spage><epage>12101</epage><pages>12085-12101</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Abstract Transcriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-mediated transcription and silencing of repair genes is further mediated by the p21-dependent E2F4/DREAM complex. Notably, repression of DNA repair is also observed following exposure to the active B[a]P metabolite BPDE and upon ionizing radiation and occurs in response to a p53/p21-triggered, irreversible cell cycle arrest marking the onset of cellular senescence. Overall, our results suggest that repression of MMR and HR is an early event during genotoxic-stress induced senescence. We propose that persistent downregulation of DNA repair might play a role in the maintenance of the senescence phenotype, which is associated with an accumulation of unrepairable DNA lesions.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><pmid>33166399</pmid><doi>10.1093/nar/gkaa965</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9289-4168</orcidid><orcidid>https://orcid.org/0000-0002-9672-231X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2020-12, Vol.48 (21), p.12085-12101
issn 0305-1048
1362-4962
language eng
recordid cdi_webofscience_primary_000606018700026
source MEDLINE; Access via Oxford University Press (Open Access Collection); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry; DOAJ开放获取期刊资源库
subjects Benzo(a)pyrene - toxicity
Biochemistry & Molecular Biology
Carcinogens - toxicity
Cell Cycle Checkpoints
Cell Line, Transformed
Cell Line, Tumor
Cellular Senescence - genetics
Cyclin-Dependent Kinase Inhibitor p21 - genetics
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
DNA - genetics
DNA - metabolism
DNA Damage
DNA Mismatch Repair - drug effects
DNA Mismatch Repair - radiation effects
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
E2F1 Transcription Factor - genetics
E2F1 Transcription Factor - metabolism
E2F4 Transcription Factor - genetics
E2F4 Transcription Factor - metabolism
Epithelial Cells - cytology
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Epithelial Cells - radiation effects
Exodeoxyribonucleases - genetics
Exodeoxyribonucleases - metabolism
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - metabolism
Fibroblasts - radiation effects
Gamma Rays
Gene regulation, Chromatin and Epigenetics
Humans
Kv Channel-Interacting Proteins - genetics
Kv Channel-Interacting Proteins - metabolism
Life Sciences & Biomedicine
MCF-7 Cells
MutS Homolog 2 Protein - genetics
MutS Homolog 2 Protein - metabolism
Rad51 Recombinase - genetics
Rad51 Recombinase - metabolism
Recombinational DNA Repair - drug effects
Recombinational DNA Repair - radiation effects
Repressor Proteins - genetics
Repressor Proteins - metabolism
Science & Technology
Signal Transduction
title Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benzo%5Ba%5Dpyrene%20represses%20DNA%20repair%20through%20altered%20E2F1/E2F4%20function%20marking%20an%20early%20event%20in%20DNA%20damage-induced%20cellular%20senescence&rft.jtitle=Nucleic%20acids%20research&rft.au=Allmann,%20Sebastian&rft.date=2020-12-02&rft.volume=48&rft.issue=21&rft.spage=12085&rft.epage=12101&rft.pages=12085-12101&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkaa965&rft_dat=%3Coup_webof%3E10.1093/nar/gkaa965%3C/oup_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33166399&rft_oup_id=10.1093/nar/gkaa965&rfr_iscdi=true