A content based image information retrieval and video thumbnail extraction framework using SOM

Searching an image or a video in a huge volume of graphical data is a tedious time-consuming process. If this search is performed using the conventional element matching technique, the complexity of the search will render the system useless. To overcome this problem, the current paper proposes a Con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-05, Vol.80 (11), p.16683-16709
Hauptverfasser: Pinto, Joey, Jain, Pooja, Kumar, Tapan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Searching an image or a video in a huge volume of graphical data is a tedious time-consuming process. If this search is performed using the conventional element matching technique, the complexity of the search will render the system useless. To overcome this problem, the current paper proposes a Content-Based Image Retrieval (CBIR) and a Content-Based Video Retrieval (CBVR) technique using clustering algorithms based on neural networks. Neural networks have proved to be quite powerful for dimensionality reduction due to their parallel computations. Retrieval of images in a large database on the basis of the content of the query image has been proved fast and efficient through practical results. Two images of the same object, but taken from different camera angles or have rotational and scaling transforms is also matched effectively. In medical domain, CBIR has proved to be a boon to the doctors. The tumor, cancer etc can be easily deducted comparing the images with normal to the images with diseases. Java and Weka have been used for implementation. The thumbnails extracted from the video facilitates the video search in a large videos database. The unsupervised nature of Self Organizing Maps (SOM) has made the software all the more robust.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-020-10227-7