Effects of lipid composition on photothermal optical coherence tomography signals

Significance: Photothermal optical coherence tomography (PT-OCT) has the promise to offer structural images coregistered with chemical composition information, which can offer a significant impact in early detection of diseases such as atherosclerosis. Aim: We take the first step in understanding th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2020-12, Vol.25 (12), p.120501-120501, Article 120501
Hauptverfasser: Salimi, Mohammadhossein, Villiger, Martin, Tabatabaei, Nima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120501
container_issue 12
container_start_page 120501
container_title Journal of biomedical optics
container_volume 25
creator Salimi, Mohammadhossein
Villiger, Martin
Tabatabaei, Nima
description Significance: Photothermal optical coherence tomography (PT-OCT) has the promise to offer structural images coregistered with chemical composition information, which can offer a significant impact in early detection of diseases such as atherosclerosis. Aim: We take the first step in understanding the relation between PT-OCT signals and the endogenous tissue composition by considering the interplay between the opto-thermo-physical properties of tissue as a function of its lipid composition and the ensuing effects on the PT-OCT signals. Approach: Multiparameter theoretical estimates for PT-OCT signal as a function of composition in a two-component lipid–water model are derived and discussed. Experimental data from various concentrations of lipid in the form of droplets and injections under bovine cardiac muscle align with theoretical predictions. Results: Theoretical and experimental results suggest that the variations of heat capacity and mass density with tissue composition significantly contribute to the amount of optical path length difference measured by OCT phase. Conclusion: PT-OCT has the potential to offer key insights into the chemical composition of the subsurface lipid pools in tissue; however, the interpretation of results needs to be carried out by keeping the nonlinear interplay between the tissue of opto-thermo-physical properties and PT-OCT signals in mind.
doi_str_mv 10.1117/1.JBO.25.12.120501
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000605144900001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862242636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-405f64cbdb799dc982072f40c8fab17d8aa807503270139201880ff72499dd633</originalsourceid><addsrcrecordid>eNqNkV2L1TAQhoMo7of-AS-k4I2w9Ozko0l6I-hh_VgWFkGvQ5om52Rpm9qkyv57U7oed72QhYEZJs87zORF6BWGDcZYnOPN5YfrDak2mOSACvATdIwrDiUhEj_NNUhaUs7lETqJ8QYAJK_5c3REKeU1xXCMvl44Z02KRXBF50ffFib0Y4g--TAUOcZ9SCHt7dTrrghj8iZnE3LDDsYWKfRhN-lxf1tEvxt0F1-gZy4n-_Iun6LvHy--bT-XV9efvmzfX5WGCUglg8pxZpq2EXXdmloSEMQxMNLpBotWai1BVECJAExrAlhKcE4QlvGWU3qK3q1zx7npbWvskCbdqXHyvZ5uVdBePXwZ_F7twk8lRCVqIHnA27sBU_gx25hU76OxXacHG-aoCBOUQV0JntE3_6A3YZ6WaxWRnBBGOF0oslJmCjFO1h2WwaAWxxRW2TFFKoWJWh3Lotf3zzhI_liUAbkCv2wTXDR--fcDlj3lUGHG6lwB3vqkF-e2YR5Slp49Xprp85WOo7d_D_zP7r8B_GvA4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862242636</pqid></control><display><type>article</type><title>Effects of lipid composition on photothermal optical coherence tomography signals</title><source>PubMed Central Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Salimi, Mohammadhossein ; Villiger, Martin ; Tabatabaei, Nima</creator><creatorcontrib>Salimi, Mohammadhossein ; Villiger, Martin ; Tabatabaei, Nima</creatorcontrib><description>Significance: Photothermal optical coherence tomography (PT-OCT) has the promise to offer structural images coregistered with chemical composition information, which can offer a significant impact in early detection of diseases such as atherosclerosis. Aim: We take the first step in understanding the relation between PT-OCT signals and the endogenous tissue composition by considering the interplay between the opto-thermo-physical properties of tissue as a function of its lipid composition and the ensuing effects on the PT-OCT signals. Approach: Multiparameter theoretical estimates for PT-OCT signal as a function of composition in a two-component lipid–water model are derived and discussed. Experimental data from various concentrations of lipid in the form of droplets and injections under bovine cardiac muscle align with theoretical predictions. Results: Theoretical and experimental results suggest that the variations of heat capacity and mass density with tissue composition significantly contribute to the amount of optical path length difference measured by OCT phase. Conclusion: PT-OCT has the potential to offer key insights into the chemical composition of the subsurface lipid pools in tissue; however, the interpretation of results needs to be carried out by keeping the nonlinear interplay between the tissue of opto-thermo-physical properties and PT-OCT signals in mind.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.25.12.120501</identifier><identifier>PMID: 33369310</identifier><language>eng</language><publisher>BELLINGHAM: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Arteriosclerosis ; Atherosclerosis ; Biochemical Research Methods ; Biochemistry &amp; Molecular Biology ; Cardiac muscle ; Chemical composition ; Fluid dynamics ; Heat ; JBO Letters ; Lasers ; Letter ; Life Sciences &amp; Biomedicine ; Lipid composition ; Lipids ; Optical Coherence Tomography ; Optical communication ; Optics ; Oxygen saturation ; Physical properties ; Physical Sciences ; Physical simulation ; Radiology, Nuclear Medicine &amp; Medical Imaging ; Science &amp; Technology ; Tissues ; Tomography</subject><ispartof>Journal of biomedical optics, 2020-12, Vol.25 (12), p.120501-120501, Article 120501</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 The Authors 2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000605144900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c470t-405f64cbdb799dc982072f40c8fab17d8aa807503270139201880ff72499dd633</citedby><cites>FETCH-LOGICAL-c470t-405f64cbdb799dc982072f40c8fab17d8aa807503270139201880ff72499dd633</cites><orcidid>0000-0003-3824-1099 ; 0000-0002-0329-4855 ; 0000-0003-3819-1271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862242636/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862242636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2114,21388,27924,27925,33744,33745,43805,53791,53793,64385,64387,64389,72469,74302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33369310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salimi, Mohammadhossein</creatorcontrib><creatorcontrib>Villiger, Martin</creatorcontrib><creatorcontrib>Tabatabaei, Nima</creatorcontrib><title>Effects of lipid composition on photothermal optical coherence tomography signals</title><title>Journal of biomedical optics</title><addtitle>J BIOMED OPT</addtitle><addtitle>J. Biomed. Opt</addtitle><description>Significance: Photothermal optical coherence tomography (PT-OCT) has the promise to offer structural images coregistered with chemical composition information, which can offer a significant impact in early detection of diseases such as atherosclerosis. Aim: We take the first step in understanding the relation between PT-OCT signals and the endogenous tissue composition by considering the interplay between the opto-thermo-physical properties of tissue as a function of its lipid composition and the ensuing effects on the PT-OCT signals. Approach: Multiparameter theoretical estimates for PT-OCT signal as a function of composition in a two-component lipid–water model are derived and discussed. Experimental data from various concentrations of lipid in the form of droplets and injections under bovine cardiac muscle align with theoretical predictions. Results: Theoretical and experimental results suggest that the variations of heat capacity and mass density with tissue composition significantly contribute to the amount of optical path length difference measured by OCT phase. Conclusion: PT-OCT has the potential to offer key insights into the chemical composition of the subsurface lipid pools in tissue; however, the interpretation of results needs to be carried out by keeping the nonlinear interplay between the tissue of opto-thermo-physical properties and PT-OCT signals in mind.</description><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Biochemical Research Methods</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Cardiac muscle</subject><subject>Chemical composition</subject><subject>Fluid dynamics</subject><subject>Heat</subject><subject>JBO Letters</subject><subject>Lasers</subject><subject>Letter</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lipid composition</subject><subject>Lipids</subject><subject>Optical Coherence Tomography</subject><subject>Optical communication</subject><subject>Optics</subject><subject>Oxygen saturation</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Physical simulation</subject><subject>Radiology, Nuclear Medicine &amp; Medical Imaging</subject><subject>Science &amp; Technology</subject><subject>Tissues</subject><subject>Tomography</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV2L1TAQhoMo7of-AS-k4I2w9Ozko0l6I-hh_VgWFkGvQ5om52Rpm9qkyv57U7oed72QhYEZJs87zORF6BWGDcZYnOPN5YfrDak2mOSACvATdIwrDiUhEj_NNUhaUs7lETqJ8QYAJK_5c3REKeU1xXCMvl44Z02KRXBF50ffFib0Y4g--TAUOcZ9SCHt7dTrrghj8iZnE3LDDsYWKfRhN-lxf1tEvxt0F1-gZy4n-_Iun6LvHy--bT-XV9efvmzfX5WGCUglg8pxZpq2EXXdmloSEMQxMNLpBotWai1BVECJAExrAlhKcE4QlvGWU3qK3q1zx7npbWvskCbdqXHyvZ5uVdBePXwZ_F7twk8lRCVqIHnA27sBU_gx25hU76OxXacHG-aoCBOUQV0JntE3_6A3YZ6WaxWRnBBGOF0oslJmCjFO1h2WwaAWxxRW2TFFKoWJWh3Lotf3zzhI_liUAbkCv2wTXDR--fcDlj3lUGHG6lwB3vqkF-e2YR5Slp49Xprp85WOo7d_D_zP7r8B_GvA4Q</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Salimi, Mohammadhossein</creator><creator>Villiger, Martin</creator><creator>Tabatabaei, Nima</creator><general>Society of Photo-Optical Instrumentation Engineers</general><general>Spie-Soc Photo-Optical Instrumentation Engineers</general><general>S P I E - International Society for</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3824-1099</orcidid><orcidid>https://orcid.org/0000-0002-0329-4855</orcidid><orcidid>https://orcid.org/0000-0003-3819-1271</orcidid></search><sort><creationdate>20201201</creationdate><title>Effects of lipid composition on photothermal optical coherence tomography signals</title><author>Salimi, Mohammadhossein ; Villiger, Martin ; Tabatabaei, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-405f64cbdb799dc982072f40c8fab17d8aa807503270139201880ff72499dd633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Biochemical Research Methods</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Cardiac muscle</topic><topic>Chemical composition</topic><topic>Fluid dynamics</topic><topic>Heat</topic><topic>JBO Letters</topic><topic>Lasers</topic><topic>Letter</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lipid composition</topic><topic>Lipids</topic><topic>Optical Coherence Tomography</topic><topic>Optical communication</topic><topic>Optics</topic><topic>Oxygen saturation</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Physical simulation</topic><topic>Radiology, Nuclear Medicine &amp; Medical Imaging</topic><topic>Science &amp; Technology</topic><topic>Tissues</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salimi, Mohammadhossein</creatorcontrib><creatorcontrib>Villiger, Martin</creatorcontrib><creatorcontrib>Tabatabaei, Nima</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salimi, Mohammadhossein</au><au>Villiger, Martin</au><au>Tabatabaei, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of lipid composition on photothermal optical coherence tomography signals</atitle><jtitle>Journal of biomedical optics</jtitle><stitle>J BIOMED OPT</stitle><addtitle>J. Biomed. Opt</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>25</volume><issue>12</issue><spage>120501</spage><epage>120501</epage><pages>120501-120501</pages><artnum>120501</artnum><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>Significance: Photothermal optical coherence tomography (PT-OCT) has the promise to offer structural images coregistered with chemical composition information, which can offer a significant impact in early detection of diseases such as atherosclerosis. Aim: We take the first step in understanding the relation between PT-OCT signals and the endogenous tissue composition by considering the interplay between the opto-thermo-physical properties of tissue as a function of its lipid composition and the ensuing effects on the PT-OCT signals. Approach: Multiparameter theoretical estimates for PT-OCT signal as a function of composition in a two-component lipid–water model are derived and discussed. Experimental data from various concentrations of lipid in the form of droplets and injections under bovine cardiac muscle align with theoretical predictions. Results: Theoretical and experimental results suggest that the variations of heat capacity and mass density with tissue composition significantly contribute to the amount of optical path length difference measured by OCT phase. Conclusion: PT-OCT has the potential to offer key insights into the chemical composition of the subsurface lipid pools in tissue; however, the interpretation of results needs to be carried out by keeping the nonlinear interplay between the tissue of opto-thermo-physical properties and PT-OCT signals in mind.</abstract><cop>BELLINGHAM</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>33369310</pmid><doi>10.1117/1.JBO.25.12.120501</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3824-1099</orcidid><orcidid>https://orcid.org/0000-0002-0329-4855</orcidid><orcidid>https://orcid.org/0000-0003-3819-1271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2020-12, Vol.25 (12), p.120501-120501, Article 120501
issn 1083-3668
1560-2281
language eng
recordid cdi_webofscience_primary_000605144900001CitationCount
source PubMed Central Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Arteriosclerosis
Atherosclerosis
Biochemical Research Methods
Biochemistry & Molecular Biology
Cardiac muscle
Chemical composition
Fluid dynamics
Heat
JBO Letters
Lasers
Letter
Life Sciences & Biomedicine
Lipid composition
Lipids
Optical Coherence Tomography
Optical communication
Optics
Oxygen saturation
Physical properties
Physical Sciences
Physical simulation
Radiology, Nuclear Medicine & Medical Imaging
Science & Technology
Tissues
Tomography
title Effects of lipid composition on photothermal optical coherence tomography signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20lipid%20composition%20on%20photothermal%20optical%20coherence%20tomography%20signals&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Salimi,%20Mohammadhossein&rft.date=2020-12-01&rft.volume=25&rft.issue=12&rft.spage=120501&rft.epage=120501&rft.pages=120501-120501&rft.artnum=120501&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.25.12.120501&rft_dat=%3Cproquest_webof%3E2862242636%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862242636&rft_id=info:pmid/33369310&rfr_iscdi=true