Primary Ideals and Their Differential Equations

An ideal in a polynomial ring encodes a system of linear partial differential equations with constant coefficients. Primary decomposition organizes the solutions to the PDE. This paper develops a novel structure theory for primary ideals in a polynomial ring. We characterize primary ideals in terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2021-10, Vol.21 (5), p.1363-1399
Hauptverfasser: Cid-Ruiz, Yairon, Homs, Roser, Sturmfels, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ideal in a polynomial ring encodes a system of linear partial differential equations with constant coefficients. Primary decomposition organizes the solutions to the PDE. This paper develops a novel structure theory for primary ideals in a polynomial ring. We characterize primary ideals in terms of PDE, punctual Hilbert schemes, relative Weyl algebras, and the join construction. Solving the PDE described by a primary ideal amounts to computing Noetherian operators in the sense of Ehrenpreis and Palamodov. We develop new algorithms for this task, and we present efficient implementations.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-020-09485-6