A Deep Learning-Based Approach for Radiation Pattern Synthesis of an Array Antenna

In this article, we propose a deep neural network (DNN)- for the radiation pattern synthesis of an antenna. The DNN utilizes the radiation patterns as inputs and the amplitude and phase of the antenna elements as outputs. Consequently, the radiation patterns of the array antenna can be easily obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.226059-226063
Hauptverfasser: Kim, Jae Hee, Choi, Sang Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226063
container_issue
container_start_page 226059
container_title IEEE access
container_volume 8
creator Kim, Jae Hee
Choi, Sang Won
description In this article, we propose a deep neural network (DNN)- for the radiation pattern synthesis of an antenna. The DNN utilizes the radiation patterns as inputs and the amplitude and phase of the antenna elements as outputs. Consequently, the radiation patterns of the array antenna can be easily obtained from the outputs of the trained DNN, which are amplitude and phase of the antenna elements. However, it is difficult to determine the amplitude and phase of each antenna element from the desired pattern in an environment where inter-element coupling exists. For this purpose, 6,859 radiation pattern samples for a 4 \times 1 array patch antenna were generated by changing the phases of the antenna elements, and those patterns were leveraged to train the proposed DNN with low complexity. The radiation patterns of the ideal square and triangular array shapes, which are practically infeasible to implement, were used as inputs to the DNN. It was confirmed that the radiation pattern generated from the output signals of the DNN was very similar to the input radiation pattern.
doi_str_mv 10.1109/ACCESS.2020.3045464
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000603716700001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9296770</ieee_id><doaj_id>oai_doaj_org_article_91310c69690042c882ac7c2f4da82731</doaj_id><sourcerecordid>2473269972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-69c20d44d1bcc0f88def13b9dc67af7dc5aa3169e8be4da3c6eff3ef74d07f013</originalsourceid><addsrcrecordid>eNqNkU9vGyEQxVdVKzVK8glyQcqxWpd_huW43aZpJEut4vaMMAwJVgIuYFX-9sHZKOmxXECj997M8Ou6C4IXhGD1eZymq_V6QTHFC4b5kgv-rjuhRKieLZl4_8_7Y3deyha3M7TSUp50tyP6CrBDKzA5hnjXfzEFHBp3u5yMvUc-ZXRrXDA1pIh-mlohR7Q-xHoPJRSUPDIRjTmbAxpjhRjNWffBm4cC5y_3aff729Wv6Xu_-nF9M42r3nI81F4oS7Hj3JGNtdgPgwNP2EY5K6Tx0tmlMaxNCcMGuDPMCvCegZfcYekxYafdzZzrktnqXQ6PJh90MkE_F1K-0ybXYB9AK8IItkIJhTGndhiosdJS33IHKtkx63LOamv_2UOpepv2ObbxNeWSUaGUpE3FZpXNqZQM_rUrwfrIQs8s9JGFfmHRXMPs-gub5IsNEC28OhsLgZkkQh6xkCnU56-e0j7WZv30_9amvpjVAeBNpagSUmL2BEBzpMk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473269972</pqid></control><display><type>article</type><title>A Deep Learning-Based Approach for Radiation Pattern Synthesis of an Array Antenna</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Kim, Jae Hee ; Choi, Sang Won</creator><creatorcontrib>Kim, Jae Hee ; Choi, Sang Won</creatorcontrib><description>In this article, we propose a deep neural network (DNN)- for the radiation pattern synthesis of an antenna. The DNN utilizes the radiation patterns as inputs and the amplitude and phase of the antenna elements as outputs. Consequently, the radiation patterns of the array antenna can be easily obtained from the outputs of the trained DNN, which are amplitude and phase of the antenna elements. However, it is difficult to determine the amplitude and phase of each antenna element from the desired pattern in an environment where inter-element coupling exists. For this purpose, 6,859 radiation pattern samples for a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;4 \times 1 &lt;/tex-math&gt;&lt;/inline-formula&gt; array patch antenna were generated by changing the phases of the antenna elements, and those patterns were leveraged to train the proposed DNN with low complexity. The radiation patterns of the ideal square and triangular array shapes, which are practically infeasible to implement, were used as inputs to the DNN. It was confirmed that the radiation pattern generated from the output signals of the DNN was very similar to the input radiation pattern.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3045464</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Amplitudes ; Antenna ; Antenna arrays ; Antenna radiation patterns ; Arrays ; Artificial neural networks ; Computer Science ; Computer Science, Information Systems ; Couplings ; Deep learning ; Engineering ; Engineering, Electrical &amp; Electronic ; neural network ; Patch antennas ; Phased arrays ; radiation patterns ; Science &amp; Technology ; Synthesis ; Technology ; Telecommunications ; Training</subject><ispartof>IEEE access, 2020, Vol.8, p.226059-226063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>47</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000603716700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-69c20d44d1bcc0f88def13b9dc67af7dc5aa3169e8be4da3c6eff3ef74d07f013</citedby><cites>FETCH-LOGICAL-c408t-69c20d44d1bcc0f88def13b9dc67af7dc5aa3169e8be4da3c6eff3ef74d07f013</cites><orcidid>0000-0003-2193-928X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9296770$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Kim, Jae Hee</creatorcontrib><creatorcontrib>Choi, Sang Won</creatorcontrib><title>A Deep Learning-Based Approach for Radiation Pattern Synthesis of an Array Antenna</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>In this article, we propose a deep neural network (DNN)- for the radiation pattern synthesis of an antenna. The DNN utilizes the radiation patterns as inputs and the amplitude and phase of the antenna elements as outputs. Consequently, the radiation patterns of the array antenna can be easily obtained from the outputs of the trained DNN, which are amplitude and phase of the antenna elements. However, it is difficult to determine the amplitude and phase of each antenna element from the desired pattern in an environment where inter-element coupling exists. For this purpose, 6,859 radiation pattern samples for a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;4 \times 1 &lt;/tex-math&gt;&lt;/inline-formula&gt; array patch antenna were generated by changing the phases of the antenna elements, and those patterns were leveraged to train the proposed DNN with low complexity. The radiation patterns of the ideal square and triangular array shapes, which are practically infeasible to implement, were used as inputs to the DNN. It was confirmed that the radiation pattern generated from the output signals of the DNN was very similar to the input radiation pattern.</description><subject>Amplitudes</subject><subject>Antenna</subject><subject>Antenna arrays</subject><subject>Antenna radiation patterns</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Couplings</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>neural network</subject><subject>Patch antennas</subject><subject>Phased arrays</subject><subject>radiation patterns</subject><subject>Science &amp; Technology</subject><subject>Synthesis</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9vGyEQxVdVKzVK8glyQcqxWpd_huW43aZpJEut4vaMMAwJVgIuYFX-9sHZKOmxXECj997M8Ou6C4IXhGD1eZymq_V6QTHFC4b5kgv-rjuhRKieLZl4_8_7Y3deyha3M7TSUp50tyP6CrBDKzA5hnjXfzEFHBp3u5yMvUc-ZXRrXDA1pIh-mlohR7Q-xHoPJRSUPDIRjTmbAxpjhRjNWffBm4cC5y_3aff729Wv6Xu_-nF9M42r3nI81F4oS7Hj3JGNtdgPgwNP2EY5K6Tx0tmlMaxNCcMGuDPMCvCegZfcYekxYafdzZzrktnqXQ6PJh90MkE_F1K-0ybXYB9AK8IItkIJhTGndhiosdJS33IHKtkx63LOamv_2UOpepv2ObbxNeWSUaGUpE3FZpXNqZQM_rUrwfrIQs8s9JGFfmHRXMPs-gub5IsNEC28OhsLgZkkQh6xkCnU56-e0j7WZv30_9amvpjVAeBNpagSUmL2BEBzpMk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kim, Jae Hee</creator><creator>Choi, Sang Won</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2193-928X</orcidid></search><sort><creationdate>2020</creationdate><title>A Deep Learning-Based Approach for Radiation Pattern Synthesis of an Array Antenna</title><author>Kim, Jae Hee ; Choi, Sang Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-69c20d44d1bcc0f88def13b9dc67af7dc5aa3169e8be4da3c6eff3ef74d07f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Antenna</topic><topic>Antenna arrays</topic><topic>Antenna radiation patterns</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Couplings</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>neural network</topic><topic>Patch antennas</topic><topic>Phased arrays</topic><topic>radiation patterns</topic><topic>Science &amp; Technology</topic><topic>Synthesis</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae Hee</creatorcontrib><creatorcontrib>Choi, Sang Won</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae Hee</au><au>Choi, Sang Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning-Based Approach for Radiation Pattern Synthesis of an Array Antenna</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>226059</spage><epage>226063</epage><pages>226059-226063</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this article, we propose a deep neural network (DNN)- for the radiation pattern synthesis of an antenna. The DNN utilizes the radiation patterns as inputs and the amplitude and phase of the antenna elements as outputs. Consequently, the radiation patterns of the array antenna can be easily obtained from the outputs of the trained DNN, which are amplitude and phase of the antenna elements. However, it is difficult to determine the amplitude and phase of each antenna element from the desired pattern in an environment where inter-element coupling exists. For this purpose, 6,859 radiation pattern samples for a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;4 \times 1 &lt;/tex-math&gt;&lt;/inline-formula&gt; array patch antenna were generated by changing the phases of the antenna elements, and those patterns were leveraged to train the proposed DNN with low complexity. The radiation patterns of the ideal square and triangular array shapes, which are practically infeasible to implement, were used as inputs to the DNN. It was confirmed that the radiation pattern generated from the output signals of the DNN was very similar to the input radiation pattern.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3045464</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2193-928X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.226059-226063
issn 2169-3536
2169-3536
language eng
recordid cdi_webofscience_primary_000603716700001
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Amplitudes
Antenna
Antenna arrays
Antenna radiation patterns
Arrays
Artificial neural networks
Computer Science
Computer Science, Information Systems
Couplings
Deep learning
Engineering
Engineering, Electrical & Electronic
neural network
Patch antennas
Phased arrays
radiation patterns
Science & Technology
Synthesis
Technology
Telecommunications
Training
title A Deep Learning-Based Approach for Radiation Pattern Synthesis of an Array Antenna
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning-Based%20Approach%20for%20Radiation%20Pattern%20Synthesis%20of%20an%20Array%20Antenna&rft.jtitle=IEEE%20access&rft.au=Kim,%20Jae%20Hee&rft.date=2020&rft.volume=8&rft.spage=226059&rft.epage=226063&rft.pages=226059-226063&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3045464&rft_dat=%3Cproquest_webof%3E2473269972%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473269972&rft_id=info:pmid/&rft_ieee_id=9296770&rft_doaj_id=oai_doaj_org_article_91310c69690042c882ac7c2f4da82731&rfr_iscdi=true