Reversible control of magnetism in FeRh thin films
The multilayer of approximate structure MgO(100)/[ n Fe 51 Rh 49 (63 Å)/ 57 Fe 51 Rh 49 (46 Å)] 10 deposited at 200 °C is primarily of paramagnetic A1 phase and is fully converted to the magnetic B2 phase by annealing at 300 °C for 60 min. Subsequent irradiation by 120 keV Ne + ions turns the thin f...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-08, Vol.10 (1), p.13923-13923, Article 13923 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13923 |
---|---|
container_issue | 1 |
container_start_page | 13923 |
container_title | Scientific reports |
container_volume | 10 |
creator | Merkel, Dániel G. Lengyel, Attila Nagy, Dénes L. Németh, Attila Horváth, Zsolt E. Bogdán, Csilla Gracheva, Maria A. Hegedűs, Gergő Sajti, Szilárd Radnóczi, György Z. Szilágyi, Edit |
description | The multilayer of approximate structure MgO(100)/[
n
Fe
51
Rh
49
(63 Å)/
57
Fe
51
Rh
49
(46 Å)]
10
deposited at 200 °C is primarily of paramagnetic A1 phase and is fully converted to the magnetic B2 phase by annealing at 300 °C for 60 min. Subsequent irradiation by 120 keV Ne
+
ions turns the thin film completely to the paramagnetic A1 phase. Repeated annealing at 300 °C for 60 min results in 100% magnetic B2 phase, i.e. a process that appears to be reversible at least twice. The A1 → B2 transformation takes place without any plane-perpendicular diffusion while Ne
+
irradiation results in significant interlayer mixing. |
doi_str_mv | 10.1038/s41598-020-70899-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000603402400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435012221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-3143af4d936e663711d1b729f11f6018fc8c98ee3567d85834e6d41f69f952953</originalsourceid><addsrcrecordid>eNqNkVtLHTEUhUNRqqh_wKeBvhRk2uxcZpKXQjloWxAKos9hTmbnnMhMYpMZL__e6Ii9PBTzkg37W4u1WYQcA_0ElKvPWYDUqqaM1i1VWtf378g-o0LWjDO288e8R45yvqblSaYF6PdkjzMFoJTaJ-wCbzFlvx6wsjFMKQ5VdNXYbQJOPo-VD9UZXmyraVsm54cxH5Jd1w0Zj17-A3J1dnq5-l6f__z2Y_X1vLZCwlRzELxzote8wabhLUAP65ZpB-AaCspZZbVC5LJpeyUVF9j0ouy00yWo5Afky-J7M69H7C2WdN1gbpIfu_RgYufN35vgt2YTb00ruATNisHHF4MUf82YJzP6bHEYuoBxzoYVTnIqdFvQD_-g13FOoZz3TFFgjEGh2ELZFHNO6F7DADVPrZilFVNaMc-tmPsiUovoDtfRZesxWHwVllYaygVl4qkgWPmpm3wMqziHqUhP3i4tNF_oXIiwwfT7hv_EewT50K00</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435012221</pqid></control><display><type>article</type><title>Reversible control of magnetism in FeRh thin films</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Merkel, Dániel G. ; Lengyel, Attila ; Nagy, Dénes L. ; Németh, Attila ; Horváth, Zsolt E. ; Bogdán, Csilla ; Gracheva, Maria A. ; Hegedűs, Gergő ; Sajti, Szilárd ; Radnóczi, György Z. ; Szilágyi, Edit</creator><creatorcontrib>Merkel, Dániel G. ; Lengyel, Attila ; Nagy, Dénes L. ; Németh, Attila ; Horváth, Zsolt E. ; Bogdán, Csilla ; Gracheva, Maria A. ; Hegedűs, Gergő ; Sajti, Szilárd ; Radnóczi, György Z. ; Szilágyi, Edit</creatorcontrib><description>The multilayer of approximate structure MgO(100)/[
n
Fe
51
Rh
49
(63 Å)/
57
Fe
51
Rh
49
(46 Å)]
10
deposited at 200 °C is primarily of paramagnetic A1 phase and is fully converted to the magnetic B2 phase by annealing at 300 °C for 60 min. Subsequent irradiation by 120 keV Ne
+
ions turns the thin film completely to the paramagnetic A1 phase. Repeated annealing at 300 °C for 60 min results in 100% magnetic B2 phase, i.e. a process that appears to be reversible at least twice. The A1 → B2 transformation takes place without any plane-perpendicular diffusion while Ne
+
irradiation results in significant interlayer mixing.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-70899-x</identifier><identifier>PMID: 32811888</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005 ; 639/301/1005/1008 ; 639/301/357 ; 639/925/357 ; 639/925/927 ; Annealing ; Electric fields ; Energy efficiency ; Humanities and Social Sciences ; Information storage ; Information technology ; Investigations ; Irradiation ; Magnetism ; Molecular beam epitaxy ; multidisciplinary ; Multidisciplinary Sciences ; Phase transitions ; Radiation ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Thin films</subject><ispartof>Scientific reports, 2020-08, Vol.10 (1), p.13923-13923, Article 13923</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000603402400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c451t-3143af4d936e663711d1b729f11f6018fc8c98ee3567d85834e6d41f69f952953</citedby><cites>FETCH-LOGICAL-c451t-3143af4d936e663711d1b729f11f6018fc8c98ee3567d85834e6d41f69f952953</cites><orcidid>0000-0002-8748-8242 ; 0000-0001-5245-8425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435192/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435192/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2116,27931,27932,28255,41127,42196,51583,53798,53800</link.rule.ids></links><search><creatorcontrib>Merkel, Dániel G.</creatorcontrib><creatorcontrib>Lengyel, Attila</creatorcontrib><creatorcontrib>Nagy, Dénes L.</creatorcontrib><creatorcontrib>Németh, Attila</creatorcontrib><creatorcontrib>Horváth, Zsolt E.</creatorcontrib><creatorcontrib>Bogdán, Csilla</creatorcontrib><creatorcontrib>Gracheva, Maria A.</creatorcontrib><creatorcontrib>Hegedűs, Gergő</creatorcontrib><creatorcontrib>Sajti, Szilárd</creatorcontrib><creatorcontrib>Radnóczi, György Z.</creatorcontrib><creatorcontrib>Szilágyi, Edit</creatorcontrib><title>Reversible control of magnetism in FeRh thin films</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><description>The multilayer of approximate structure MgO(100)/[
n
Fe
51
Rh
49
(63 Å)/
57
Fe
51
Rh
49
(46 Å)]
10
deposited at 200 °C is primarily of paramagnetic A1 phase and is fully converted to the magnetic B2 phase by annealing at 300 °C for 60 min. Subsequent irradiation by 120 keV Ne
+
ions turns the thin film completely to the paramagnetic A1 phase. Repeated annealing at 300 °C for 60 min results in 100% magnetic B2 phase, i.e. a process that appears to be reversible at least twice. The A1 → B2 transformation takes place without any plane-perpendicular diffusion while Ne
+
irradiation results in significant interlayer mixing.</description><subject>639/301/1005</subject><subject>639/301/1005/1008</subject><subject>639/301/357</subject><subject>639/925/357</subject><subject>639/925/927</subject><subject>Annealing</subject><subject>Electric fields</subject><subject>Energy efficiency</subject><subject>Humanities and Social Sciences</subject><subject>Information storage</subject><subject>Information technology</subject><subject>Investigations</subject><subject>Irradiation</subject><subject>Magnetism</subject><subject>Molecular beam epitaxy</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Phase transitions</subject><subject>Radiation</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Thin films</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkVtLHTEUhUNRqqh_wKeBvhRk2uxcZpKXQjloWxAKos9hTmbnnMhMYpMZL__e6Ii9PBTzkg37W4u1WYQcA_0ElKvPWYDUqqaM1i1VWtf378g-o0LWjDO288e8R45yvqblSaYF6PdkjzMFoJTaJ-wCbzFlvx6wsjFMKQ5VdNXYbQJOPo-VD9UZXmyraVsm54cxH5Jd1w0Zj17-A3J1dnq5-l6f__z2Y_X1vLZCwlRzELxzote8wabhLUAP65ZpB-AaCspZZbVC5LJpeyUVF9j0ouy00yWo5Afky-J7M69H7C2WdN1gbpIfu_RgYufN35vgt2YTb00ruATNisHHF4MUf82YJzP6bHEYuoBxzoYVTnIqdFvQD_-g13FOoZz3TFFgjEGh2ELZFHNO6F7DADVPrZilFVNaMc-tmPsiUovoDtfRZesxWHwVllYaygVl4qkgWPmpm3wMqziHqUhP3i4tNF_oXIiwwfT7hv_EewT50K00</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Merkel, Dániel G.</creator><creator>Lengyel, Attila</creator><creator>Nagy, Dénes L.</creator><creator>Németh, Attila</creator><creator>Horváth, Zsolt E.</creator><creator>Bogdán, Csilla</creator><creator>Gracheva, Maria A.</creator><creator>Hegedűs, Gergő</creator><creator>Sajti, Szilárd</creator><creator>Radnóczi, György Z.</creator><creator>Szilágyi, Edit</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8748-8242</orcidid><orcidid>https://orcid.org/0000-0001-5245-8425</orcidid></search><sort><creationdate>20200818</creationdate><title>Reversible control of magnetism in FeRh thin films</title><author>Merkel, Dániel G. ; Lengyel, Attila ; Nagy, Dénes L. ; Németh, Attila ; Horváth, Zsolt E. ; Bogdán, Csilla ; Gracheva, Maria A. ; Hegedűs, Gergő ; Sajti, Szilárd ; Radnóczi, György Z. ; Szilágyi, Edit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-3143af4d936e663711d1b729f11f6018fc8c98ee3567d85834e6d41f69f952953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1005</topic><topic>639/301/1005/1008</topic><topic>639/301/357</topic><topic>639/925/357</topic><topic>639/925/927</topic><topic>Annealing</topic><topic>Electric fields</topic><topic>Energy efficiency</topic><topic>Humanities and Social Sciences</topic><topic>Information storage</topic><topic>Information technology</topic><topic>Investigations</topic><topic>Irradiation</topic><topic>Magnetism</topic><topic>Molecular beam epitaxy</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Phase transitions</topic><topic>Radiation</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkel, Dániel G.</creatorcontrib><creatorcontrib>Lengyel, Attila</creatorcontrib><creatorcontrib>Nagy, Dénes L.</creatorcontrib><creatorcontrib>Németh, Attila</creatorcontrib><creatorcontrib>Horváth, Zsolt E.</creatorcontrib><creatorcontrib>Bogdán, Csilla</creatorcontrib><creatorcontrib>Gracheva, Maria A.</creatorcontrib><creatorcontrib>Hegedűs, Gergő</creatorcontrib><creatorcontrib>Sajti, Szilárd</creatorcontrib><creatorcontrib>Radnóczi, György Z.</creatorcontrib><creatorcontrib>Szilágyi, Edit</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkel, Dániel G.</au><au>Lengyel, Attila</au><au>Nagy, Dénes L.</au><au>Németh, Attila</au><au>Horváth, Zsolt E.</au><au>Bogdán, Csilla</au><au>Gracheva, Maria A.</au><au>Hegedűs, Gergő</au><au>Sajti, Szilárd</au><au>Radnóczi, György Z.</au><au>Szilágyi, Edit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible control of magnetism in FeRh thin films</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><date>2020-08-18</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>13923</spage><epage>13923</epage><pages>13923-13923</pages><artnum>13923</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The multilayer of approximate structure MgO(100)/[
n
Fe
51
Rh
49
(63 Å)/
57
Fe
51
Rh
49
(46 Å)]
10
deposited at 200 °C is primarily of paramagnetic A1 phase and is fully converted to the magnetic B2 phase by annealing at 300 °C for 60 min. Subsequent irradiation by 120 keV Ne
+
ions turns the thin film completely to the paramagnetic A1 phase. Repeated annealing at 300 °C for 60 min results in 100% magnetic B2 phase, i.e. a process that appears to be reversible at least twice. The A1 → B2 transformation takes place without any plane-perpendicular diffusion while Ne
+
irradiation results in significant interlayer mixing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32811888</pmid><doi>10.1038/s41598-020-70899-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8748-8242</orcidid><orcidid>https://orcid.org/0000-0001-5245-8425</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-08, Vol.10 (1), p.13923-13923, Article 13923 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_webofscience_primary_000603402400001CitationCount |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 639/301/1005 639/301/1005/1008 639/301/357 639/925/357 639/925/927 Annealing Electric fields Energy efficiency Humanities and Social Sciences Information storage Information technology Investigations Irradiation Magnetism Molecular beam epitaxy multidisciplinary Multidisciplinary Sciences Phase transitions Radiation Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Thin films |
title | Reversible control of magnetism in FeRh thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20control%20of%20magnetism%20in%20FeRh%20thin%20films&rft.jtitle=Scientific%20reports&rft.au=Merkel,%20D%C3%A1niel%20G.&rft.date=2020-08-18&rft.volume=10&rft.issue=1&rft.spage=13923&rft.epage=13923&rft.pages=13923-13923&rft.artnum=13923&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-70899-x&rft_dat=%3Cproquest_webof%3E2435012221%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435012221&rft_id=info:pmid/32811888&rfr_iscdi=true |