Multilayered structural design of flexible films for smart thermal management

Intelligent materials have the ability to sense the environment and respond to their surrounding accordingly. Herein, the thermally conductive hybrid films were intellectualized by using activated shape memory composite as matrix, which endows hybrid films with active heat dissipation behavior. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2021-02, Vol.141, p.106222, Article 106222
Hauptverfasser: Song, Yuting, Jiang, Fang, Song, Na, Shi, Liyi, Ding, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106222
container_title Composites. Part A, Applied science and manufacturing
container_volume 141
creator Song, Yuting
Jiang, Fang
Song, Na
Shi, Liyi
Ding, Peng
description Intelligent materials have the ability to sense the environment and respond to their surrounding accordingly. Herein, the thermally conductive hybrid films were intellectualized by using activated shape memory composite as matrix, which endows hybrid films with active heat dissipation behavior. The obtained hybrid films not only visualize the temperature of the device by the change of shape, but also further improve thermal management abilities through the increase of contact area of the films with air in the shape changing process. The hybrid films also show high thermal conductivity because the multilayered structure was designed and constructed through the method of evaporation-induced self-assembly followed by hot-pressing technology. With the same content of graphene nanosheets, thermal conductivities of hybrid films are increased with the increase of layers. Five layered hybrid film shows the highest thermal management abilities and achieves the thermal conductivity as high as 19.37 W·m−1·K−1, which is 79.4% higher than single layered hybrid film. The structure design of hybrid films and their intellectualization opens up a new direction to improve thermal management effect of soft polymeric materials.
doi_str_mv 10.1016/j.compositesa.2020.106222
format Article
fullrecord <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000603354700003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X20304590</els_id><sourcerecordid>S1359835X20304590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-ffc40c881b8fa029f907c820d2cd79435bceb53d84ba358dcbbba7c29dbca6cf3</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKf_oV5LZ5r0I72U4hdseKPgXcjHycxom5Gk6v69nR3i5a7O4fA-h5cHoesMLzKclbebhXLd1gUbIYgFwWR_LwkhJ2iWsYqlBcvx6bjTok4ZLd7P0UUIG4wxpXU2Q6vV0Ebbih140EmIflBx8KJNNAS77hNnEtPCt5UtJMa2XUiM80nohI9J_ADfjdFO9GINHfTxEp0Z0Qa4Osw5enu4f22e0uXL43Nzt0wVJVlMjVE5VoxlkhmBSW1qXClGsCZKV3VOC6lAFlSzXApaMK2klKJSpNZSiVIZOkf19Fd5F4IHw7fejp12PMN874Vv-D8vfO-FT15G9mZiv0A6E5SFXsEfP4opRzVFXuFfR3PEjk83NopoXd-4oY8j2kwojCY-LXh-wLX1oCLXzh5R9wdhXJXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multilayered structural design of flexible films for smart thermal management</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Song, Yuting ; Jiang, Fang ; Song, Na ; Shi, Liyi ; Ding, Peng</creator><creatorcontrib>Song, Yuting ; Jiang, Fang ; Song, Na ; Shi, Liyi ; Ding, Peng</creatorcontrib><description>Intelligent materials have the ability to sense the environment and respond to their surrounding accordingly. Herein, the thermally conductive hybrid films were intellectualized by using activated shape memory composite as matrix, which endows hybrid films with active heat dissipation behavior. The obtained hybrid films not only visualize the temperature of the device by the change of shape, but also further improve thermal management abilities through the increase of contact area of the films with air in the shape changing process. The hybrid films also show high thermal conductivity because the multilayered structure was designed and constructed through the method of evaporation-induced self-assembly followed by hot-pressing technology. With the same content of graphene nanosheets, thermal conductivities of hybrid films are increased with the increase of layers. Five layered hybrid film shows the highest thermal management abilities and achieves the thermal conductivity as high as 19.37 W·m−1·K−1, which is 79.4% higher than single layered hybrid film. The structure design of hybrid films and their intellectualization opens up a new direction to improve thermal management effect of soft polymeric materials.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2020.106222</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Engineering ; Engineering, Manufacturing ; Intellectualization ; Materials Science ; Materials Science, Composites ; Science &amp; Technology ; Shape memory polymer ; Structural design ; Technology ; Thermal conductivity ; Thermal management</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2021-02, Vol.141, p.106222, Article 106222</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000603354700003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c321t-ffc40c881b8fa029f907c820d2cd79435bceb53d84ba358dcbbba7c29dbca6cf3</citedby><cites>FETCH-LOGICAL-c321t-ffc40c881b8fa029f907c820d2cd79435bceb53d84ba358dcbbba7c29dbca6cf3</cites><orcidid>0000-0003-1959-7794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2020.106222$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Song, Yuting</creatorcontrib><creatorcontrib>Jiang, Fang</creatorcontrib><creatorcontrib>Song, Na</creatorcontrib><creatorcontrib>Shi, Liyi</creatorcontrib><creatorcontrib>Ding, Peng</creatorcontrib><title>Multilayered structural design of flexible films for smart thermal management</title><title>Composites. Part A, Applied science and manufacturing</title><addtitle>COMPOS PART A-APPL S</addtitle><description>Intelligent materials have the ability to sense the environment and respond to their surrounding accordingly. Herein, the thermally conductive hybrid films were intellectualized by using activated shape memory composite as matrix, which endows hybrid films with active heat dissipation behavior. The obtained hybrid films not only visualize the temperature of the device by the change of shape, but also further improve thermal management abilities through the increase of contact area of the films with air in the shape changing process. The hybrid films also show high thermal conductivity because the multilayered structure was designed and constructed through the method of evaporation-induced self-assembly followed by hot-pressing technology. With the same content of graphene nanosheets, thermal conductivities of hybrid films are increased with the increase of layers. Five layered hybrid film shows the highest thermal management abilities and achieves the thermal conductivity as high as 19.37 W·m−1·K−1, which is 79.4% higher than single layered hybrid film. The structure design of hybrid films and their intellectualization opens up a new direction to improve thermal management effect of soft polymeric materials.</description><subject>Engineering</subject><subject>Engineering, Manufacturing</subject><subject>Intellectualization</subject><subject>Materials Science</subject><subject>Materials Science, Composites</subject><subject>Science &amp; Technology</subject><subject>Shape memory polymer</subject><subject>Structural design</subject><subject>Technology</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkF1LwzAUhoMoOKf_oV5LZ5r0I72U4hdseKPgXcjHycxom5Gk6v69nR3i5a7O4fA-h5cHoesMLzKclbebhXLd1gUbIYgFwWR_LwkhJ2iWsYqlBcvx6bjTok4ZLd7P0UUIG4wxpXU2Q6vV0Ebbih140EmIflBx8KJNNAS77hNnEtPCt5UtJMa2XUiM80nohI9J_ADfjdFO9GINHfTxEp0Z0Qa4Osw5enu4f22e0uXL43Nzt0wVJVlMjVE5VoxlkhmBSW1qXClGsCZKV3VOC6lAFlSzXApaMK2klKJSpNZSiVIZOkf19Fd5F4IHw7fejp12PMN874Vv-D8vfO-FT15G9mZiv0A6E5SFXsEfP4opRzVFXuFfR3PEjk83NopoXd-4oY8j2kwojCY-LXh-wLX1oCLXzh5R9wdhXJXk</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Song, Yuting</creator><creator>Jiang, Fang</creator><creator>Song, Na</creator><creator>Shi, Liyi</creator><creator>Ding, Peng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1959-7794</orcidid></search><sort><creationdate>202102</creationdate><title>Multilayered structural design of flexible films for smart thermal management</title><author>Song, Yuting ; Jiang, Fang ; Song, Na ; Shi, Liyi ; Ding, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-ffc40c881b8fa029f907c820d2cd79435bceb53d84ba358dcbbba7c29dbca6cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering</topic><topic>Engineering, Manufacturing</topic><topic>Intellectualization</topic><topic>Materials Science</topic><topic>Materials Science, Composites</topic><topic>Science &amp; Technology</topic><topic>Shape memory polymer</topic><topic>Structural design</topic><topic>Technology</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yuting</creatorcontrib><creatorcontrib>Jiang, Fang</creatorcontrib><creatorcontrib>Song, Na</creatorcontrib><creatorcontrib>Shi, Liyi</creatorcontrib><creatorcontrib>Ding, Peng</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yuting</au><au>Jiang, Fang</au><au>Song, Na</au><au>Shi, Liyi</au><au>Ding, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilayered structural design of flexible films for smart thermal management</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><stitle>COMPOS PART A-APPL S</stitle><date>2021-02</date><risdate>2021</risdate><volume>141</volume><spage>106222</spage><pages>106222-</pages><artnum>106222</artnum><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>Intelligent materials have the ability to sense the environment and respond to their surrounding accordingly. Herein, the thermally conductive hybrid films were intellectualized by using activated shape memory composite as matrix, which endows hybrid films with active heat dissipation behavior. The obtained hybrid films not only visualize the temperature of the device by the change of shape, but also further improve thermal management abilities through the increase of contact area of the films with air in the shape changing process. The hybrid films also show high thermal conductivity because the multilayered structure was designed and constructed through the method of evaporation-induced self-assembly followed by hot-pressing technology. With the same content of graphene nanosheets, thermal conductivities of hybrid films are increased with the increase of layers. Five layered hybrid film shows the highest thermal management abilities and achieves the thermal conductivity as high as 19.37 W·m−1·K−1, which is 79.4% higher than single layered hybrid film. The structure design of hybrid films and their intellectualization opens up a new direction to improve thermal management effect of soft polymeric materials.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2020.106222</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1959-7794</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2021-02, Vol.141, p.106222, Article 106222
issn 1359-835X
1878-5840
language eng
recordid cdi_webofscience_primary_000603354700003
source ScienceDirect Journals (5 years ago - present); Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Engineering
Engineering, Manufacturing
Intellectualization
Materials Science
Materials Science, Composites
Science & Technology
Shape memory polymer
Structural design
Technology
Thermal conductivity
Thermal management
title Multilayered structural design of flexible films for smart thermal management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T16%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilayered%20structural%20design%20of%20flexible%20films%20for%20smart%20thermal%20management&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Song,%20Yuting&rft.date=2021-02&rft.volume=141&rft.spage=106222&rft.pages=106222-&rft.artnum=106222&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2020.106222&rft_dat=%3Celsevier_webof%3ES1359835X20304590%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359835X20304590&rfr_iscdi=true