Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes
This paper studies the uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes from 52 groundwater samples in the province of Granada (Betic Cordillera, southeastern Spain). According to the geological complexity of the zone, three groups of samples have b...
Gespeichert in:
Veröffentlicht in: | Journal of environmental radioactivity 2021-02, Vol.227 (February), p.106503, Article 106503 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | February |
container_start_page | 106503 |
container_title | Journal of environmental radioactivity |
container_volume | 227 |
creator | Milena-Pérez, A. Piñero-García, F. Benavente, J. Expósito-Suárez, V.M. Vacas-Arquero, P. Ferro-García, M.A. |
description | This paper studies the uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes from 52 groundwater samples in the province of Granada (Betic Cordillera, southeastern Spain). According to the geological complexity of the zone, three groups of samples have been considered. In Group 1 (thermal waters; longest residence time), the average uranium content was 2.63 ± 0.16 μg/L, and 234U/238U activity ratios (AR) were the highest of all samples, averaging 1.92 ± 0.30. In Group 2 (mainly springs from carbonate aquifers; intermediate residence time), dissolved uranium presented an average value of 1.34 ± 0.13 μg/L, while AR average value was 1.38 ± 0.25. Group 3 comes from pumping wells in a highly anthropized alluvial aquifer. In this group, where the residence time of the groundwater is the shortest of the three, average uranium content was 5.28 ± 0.26 μg/L, and average AR is the lowest (1.17 ± 0.12). In addition, the high dissolved uranium value and the low AR brought to light the contribution of fertilizers (Group 3). In the three groups, 235U/238U activity ratios were similar to the natural value of 0.046. Therefore, 235U detected in the samples comes from natural sources. This study is completed with the determination of major ions and physicochemical parameters in the groundwater samples and the statistical analysis of the data by using the Principal Component Analysis. This calculation indicates the correlation between uranium isotopes and bicarbonate and nitrate anions.
•Natural uranium isotopic ratios have been calculated and used as a prospecting tool in hydrogeochemical processes in groundwater samples.•Anthropogenic contribution to the presence of uranium has been found.•234U/238U activity ratio has demonstrated to be a key factor to distinguish different geological environments.•A statistical study has been performed and some chemical processes that take place in water have been remarked. |
doi_str_mv | 10.1016/j.jenvrad.2020.106503 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_webof</sourceid><recordid>TN_cdi_webofscience_primary_000603350000005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0265931X20307499</els_id><sourcerecordid>S0265931X20307499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4496435e1457b4db56a3e0192ed8dd4f16f9634043f78c3fed9ce9aaebc0e53c3</originalsourceid><addsrcrecordid>eNqNkM1uGyEURlHUqnHSPkIq9tW4l-HHM6uqstI2UqRsEqk7xMAdB8sepsAk8tsXd1xvWxYgffrOBQ4hNwyWDJj6vF1ucXiJxi1rqI-ZksAvyII1q7ZiK4A3ZAG1klXL2c9LcpXSFqDkTf2OXHJet6pR9YLYp2gGP-2pDUPGIVMzODqdMp9CDqO31PmEvya_8130hppEDc0h7MpGvSuU7w_0-eBi2GCwz7j31uzoGIPFlDC9J297s0v44XRek6dvt4_rH9X9w_e79df7ygrguRKiVYJLZEKuOuE6qQxHYG2NrnFO9Ez1reICBO9XjeU9utZiawx2FlByy69JNc9NrzhOnR6j35t40MF4vZlGXaLNpBNqDkwwWfpy7tsYUorYnwkG-ihZb_VJsj5K1rPkwn2cuXLJHt2Z-mu1FD7NhVfsQp-sx8HiuQYAqkyR8Gcdn9H8f3vts8k-DOswDbmgX2YUi9YXj1GfcOcj2qxd8P_4y29A9bP6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Milena-Pérez, A. ; Piñero-García, F. ; Benavente, J. ; Expósito-Suárez, V.M. ; Vacas-Arquero, P. ; Ferro-García, M.A.</creator><creatorcontrib>Milena-Pérez, A. ; Piñero-García, F. ; Benavente, J. ; Expósito-Suárez, V.M. ; Vacas-Arquero, P. ; Ferro-García, M.A.</creatorcontrib><description>This paper studies the uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes from 52 groundwater samples in the province of Granada (Betic Cordillera, southeastern Spain). According to the geological complexity of the zone, three groups of samples have been considered. In Group 1 (thermal waters; longest residence time), the average uranium content was 2.63 ± 0.16 μg/L, and 234U/238U activity ratios (AR) were the highest of all samples, averaging 1.92 ± 0.30. In Group 2 (mainly springs from carbonate aquifers; intermediate residence time), dissolved uranium presented an average value of 1.34 ± 0.13 μg/L, while AR average value was 1.38 ± 0.25. Group 3 comes from pumping wells in a highly anthropized alluvial aquifer. In this group, where the residence time of the groundwater is the shortest of the three, average uranium content was 5.28 ± 0.26 μg/L, and average AR is the lowest (1.17 ± 0.12). In addition, the high dissolved uranium value and the low AR brought to light the contribution of fertilizers (Group 3). In the three groups, 235U/238U activity ratios were similar to the natural value of 0.046. Therefore, 235U detected in the samples comes from natural sources. This study is completed with the determination of major ions and physicochemical parameters in the groundwater samples and the statistical analysis of the data by using the Principal Component Analysis. This calculation indicates the correlation between uranium isotopes and bicarbonate and nitrate anions.
•Natural uranium isotopic ratios have been calculated and used as a prospecting tool in hydrogeochemical processes in groundwater samples.•Anthropogenic contribution to the presence of uranium has been found.•234U/238U activity ratio has demonstrated to be a key factor to distinguish different geological environments.•A statistical study has been performed and some chemical processes that take place in water have been remarked.</description><identifier>ISSN: 0265-931X</identifier><identifier>EISSN: 1879-1700</identifier><identifier>DOI: 10.1016/j.jenvrad.2020.106503</identifier><identifier>PMID: 33296862</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>234U/238U ; alpha-recoil ; betic ; Betic cordillera ; cordillera ; Environmental Sciences ; Environmental Sciences & Ecology ; fertilizer-derived uranium ; fractionation ; granada ; Groundwater ; Hydrogeochemistry ; Life Sciences & Biomedicine ; Radiation Monitoring ; Radiologi och bildbehandling ; Radiology, Nuclear Medicine and Medical Imaging ; radionuclides ; risk-assessment ; Science & Technology ; Spain ; u-238 isotopes ; u-series disequilibria ; Uranium - analysis ; Uranium natural isotopes ; Water Pollutants, Radioactive - analysis</subject><ispartof>Journal of environmental radioactivity, 2021-02, Vol.227 (February), p.106503, Article 106503</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000603350000005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c403t-4496435e1457b4db56a3e0192ed8dd4f16f9634043f78c3fed9ce9aaebc0e53c3</citedby><cites>FETCH-LOGICAL-c403t-4496435e1457b4db56a3e0192ed8dd4f16f9634043f78c3fed9ce9aaebc0e53c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jenvrad.2020.106503$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3552,27931,27932,39265,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33296862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/301415$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Milena-Pérez, A.</creatorcontrib><creatorcontrib>Piñero-García, F.</creatorcontrib><creatorcontrib>Benavente, J.</creatorcontrib><creatorcontrib>Expósito-Suárez, V.M.</creatorcontrib><creatorcontrib>Vacas-Arquero, P.</creatorcontrib><creatorcontrib>Ferro-García, M.A.</creatorcontrib><title>Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes</title><title>Journal of environmental radioactivity</title><addtitle>J ENVIRON RADIOACTIV</addtitle><addtitle>J Environ Radioact</addtitle><description>This paper studies the uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes from 52 groundwater samples in the province of Granada (Betic Cordillera, southeastern Spain). According to the geological complexity of the zone, three groups of samples have been considered. In Group 1 (thermal waters; longest residence time), the average uranium content was 2.63 ± 0.16 μg/L, and 234U/238U activity ratios (AR) were the highest of all samples, averaging 1.92 ± 0.30. In Group 2 (mainly springs from carbonate aquifers; intermediate residence time), dissolved uranium presented an average value of 1.34 ± 0.13 μg/L, while AR average value was 1.38 ± 0.25. Group 3 comes from pumping wells in a highly anthropized alluvial aquifer. In this group, where the residence time of the groundwater is the shortest of the three, average uranium content was 5.28 ± 0.26 μg/L, and average AR is the lowest (1.17 ± 0.12). In addition, the high dissolved uranium value and the low AR brought to light the contribution of fertilizers (Group 3). In the three groups, 235U/238U activity ratios were similar to the natural value of 0.046. Therefore, 235U detected in the samples comes from natural sources. This study is completed with the determination of major ions and physicochemical parameters in the groundwater samples and the statistical analysis of the data by using the Principal Component Analysis. This calculation indicates the correlation between uranium isotopes and bicarbonate and nitrate anions.
•Natural uranium isotopic ratios have been calculated and used as a prospecting tool in hydrogeochemical processes in groundwater samples.•Anthropogenic contribution to the presence of uranium has been found.•234U/238U activity ratio has demonstrated to be a key factor to distinguish different geological environments.•A statistical study has been performed and some chemical processes that take place in water have been remarked.</description><subject>234U/238U</subject><subject>alpha-recoil</subject><subject>betic</subject><subject>Betic cordillera</subject><subject>cordillera</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>fertilizer-derived uranium</subject><subject>fractionation</subject><subject>granada</subject><subject>Groundwater</subject><subject>Hydrogeochemistry</subject><subject>Life Sciences & Biomedicine</subject><subject>Radiation Monitoring</subject><subject>Radiologi och bildbehandling</subject><subject>Radiology, Nuclear Medicine and Medical Imaging</subject><subject>radionuclides</subject><subject>risk-assessment</subject><subject>Science & Technology</subject><subject>Spain</subject><subject>u-238 isotopes</subject><subject>u-series disequilibria</subject><subject>Uranium - analysis</subject><subject>Uranium natural isotopes</subject><subject>Water Pollutants, Radioactive - analysis</subject><issn>0265-931X</issn><issn>1879-1700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkM1uGyEURlHUqnHSPkIq9tW4l-HHM6uqstI2UqRsEqk7xMAdB8sepsAk8tsXd1xvWxYgffrOBQ4hNwyWDJj6vF1ucXiJxi1rqI-ZksAvyII1q7ZiK4A3ZAG1klXL2c9LcpXSFqDkTf2OXHJet6pR9YLYp2gGP-2pDUPGIVMzODqdMp9CDqO31PmEvya_8130hppEDc0h7MpGvSuU7w_0-eBi2GCwz7j31uzoGIPFlDC9J297s0v44XRek6dvt4_rH9X9w_e79df7ygrguRKiVYJLZEKuOuE6qQxHYG2NrnFO9Ez1reICBO9XjeU9utZiawx2FlByy69JNc9NrzhOnR6j35t40MF4vZlGXaLNpBNqDkwwWfpy7tsYUorYnwkG-ihZb_VJsj5K1rPkwn2cuXLJHt2Z-mu1FD7NhVfsQp-sx8HiuQYAqkyR8Gcdn9H8f3vts8k-DOswDbmgX2YUi9YXj1GfcOcj2qxd8P_4y29A9bP6</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Milena-Pérez, A.</creator><creator>Piñero-García, F.</creator><creator>Benavente, J.</creator><creator>Expósito-Suárez, V.M.</creator><creator>Vacas-Arquero, P.</creator><creator>Ferro-García, M.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope></search><sort><creationdate>20210201</creationdate><title>Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes</title><author>Milena-Pérez, A. ; Piñero-García, F. ; Benavente, J. ; Expósito-Suárez, V.M. ; Vacas-Arquero, P. ; Ferro-García, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4496435e1457b4db56a3e0192ed8dd4f16f9634043f78c3fed9ce9aaebc0e53c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>234U/238U</topic><topic>alpha-recoil</topic><topic>betic</topic><topic>Betic cordillera</topic><topic>cordillera</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>fertilizer-derived uranium</topic><topic>fractionation</topic><topic>granada</topic><topic>Groundwater</topic><topic>Hydrogeochemistry</topic><topic>Life Sciences & Biomedicine</topic><topic>Radiation Monitoring</topic><topic>Radiologi och bildbehandling</topic><topic>Radiology, Nuclear Medicine and Medical Imaging</topic><topic>radionuclides</topic><topic>risk-assessment</topic><topic>Science & Technology</topic><topic>Spain</topic><topic>u-238 isotopes</topic><topic>u-series disequilibria</topic><topic>Uranium - analysis</topic><topic>Uranium natural isotopes</topic><topic>Water Pollutants, Radioactive - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milena-Pérez, A.</creatorcontrib><creatorcontrib>Piñero-García, F.</creatorcontrib><creatorcontrib>Benavente, J.</creatorcontrib><creatorcontrib>Expósito-Suárez, V.M.</creatorcontrib><creatorcontrib>Vacas-Arquero, P.</creatorcontrib><creatorcontrib>Ferro-García, M.A.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Journal of environmental radioactivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milena-Pérez, A.</au><au>Piñero-García, F.</au><au>Benavente, J.</au><au>Expósito-Suárez, V.M.</au><au>Vacas-Arquero, P.</au><au>Ferro-García, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes</atitle><jtitle>Journal of environmental radioactivity</jtitle><stitle>J ENVIRON RADIOACTIV</stitle><addtitle>J Environ Radioact</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>227</volume><issue>February</issue><spage>106503</spage><pages>106503-</pages><artnum>106503</artnum><issn>0265-931X</issn><eissn>1879-1700</eissn><abstract>This paper studies the uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes from 52 groundwater samples in the province of Granada (Betic Cordillera, southeastern Spain). According to the geological complexity of the zone, three groups of samples have been considered. In Group 1 (thermal waters; longest residence time), the average uranium content was 2.63 ± 0.16 μg/L, and 234U/238U activity ratios (AR) were the highest of all samples, averaging 1.92 ± 0.30. In Group 2 (mainly springs from carbonate aquifers; intermediate residence time), dissolved uranium presented an average value of 1.34 ± 0.13 μg/L, while AR average value was 1.38 ± 0.25. Group 3 comes from pumping wells in a highly anthropized alluvial aquifer. In this group, where the residence time of the groundwater is the shortest of the three, average uranium content was 5.28 ± 0.26 μg/L, and average AR is the lowest (1.17 ± 0.12). In addition, the high dissolved uranium value and the low AR brought to light the contribution of fertilizers (Group 3). In the three groups, 235U/238U activity ratios were similar to the natural value of 0.046. Therefore, 235U detected in the samples comes from natural sources. This study is completed with the determination of major ions and physicochemical parameters in the groundwater samples and the statistical analysis of the data by using the Principal Component Analysis. This calculation indicates the correlation between uranium isotopes and bicarbonate and nitrate anions.
•Natural uranium isotopic ratios have been calculated and used as a prospecting tool in hydrogeochemical processes in groundwater samples.•Anthropogenic contribution to the presence of uranium has been found.•234U/238U activity ratio has demonstrated to be a key factor to distinguish different geological environments.•A statistical study has been performed and some chemical processes that take place in water have been remarked.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>33296862</pmid><doi>10.1016/j.jenvrad.2020.106503</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-931X |
ispartof | Journal of environmental radioactivity, 2021-02, Vol.227 (February), p.106503, Article 106503 |
issn | 0265-931X 1879-1700 |
language | eng |
recordid | cdi_webofscience_primary_000603350000005 |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | 234U/238U alpha-recoil betic Betic cordillera cordillera Environmental Sciences Environmental Sciences & Ecology fertilizer-derived uranium fractionation granada Groundwater Hydrogeochemistry Life Sciences & Biomedicine Radiation Monitoring Radiologi och bildbehandling Radiology, Nuclear Medicine and Medical Imaging radionuclides risk-assessment Science & Technology Spain u-238 isotopes u-series disequilibria Uranium - analysis Uranium natural isotopes Water Pollutants, Radioactive - analysis |
title | Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uranium%20content%20and%20uranium%20isotopic%20disequilibria%20as%20a%20tool%20to%20identify%20hydrogeochemical%20processes&rft.jtitle=Journal%20of%20environmental%20radioactivity&rft.au=Milena-P%C3%A9rez,%20A.&rft.date=2021-02-01&rft.volume=227&rft.issue=February&rft.spage=106503&rft.pages=106503-&rft.artnum=106503&rft.issn=0265-931X&rft.eissn=1879-1700&rft_id=info:doi/10.1016/j.jenvrad.2020.106503&rft_dat=%3Celsevier_webof%3ES0265931X20307499%3C/elsevier_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33296862&rft_els_id=S0265931X20307499&rfr_iscdi=true |