Tribological behavior of friction stir processed Si-p/ZA40 in-situ composites

The effect of friction stir processing (FSP) at different rotation speeds (400, 630, 800, and 1000 r/min) and traverse speeds (25 and 50 mm/min) on the tribological properties of a Si particle reinforced Zn-40Al-2Cu-based in-situ composite was investigated. After preliminary optimization, 800 r/min...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of Nonferrous Metals Society of China 2020-11, Vol.30 (11), p.3043-3057
Hauptverfasser: Rajabi, F., Taghiabadi, R., Shaeri, M. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of friction stir processing (FSP) at different rotation speeds (400, 630, 800, and 1000 r/min) and traverse speeds (25 and 50 mm/min) on the tribological properties of a Si particle reinforced Zn-40Al-2Cu-based in-situ composite was investigated. After preliminary optimization, 800 r/min and 25 mm/min were selected as optimum FSP parameters. According to the results, multi-pass FSP improved the tribological properties. For instance, at an applied pressure of 0.75 MPa, the wear rate and average coefficient of friction (COF) of four-pass FSPed composite were lower than those of base composite by 53% and 50%, respectively. SEM examinations of worn surfaces, wear debris, and worn subsurfaces revealed that the intensive refinement and uniform distribution of microstructural phases, especially the coarse Si particles, reduced Si particles interspacing, and elimination of casting defects were the most important factors enhancing the substrate resistance against sliding-induced deformation. This led to the formation of stable tribolayers that improved the tribological properties.
ISSN:1003-6326
2210-3384
DOI:10.1016/S1003-6326(20)65441-3