Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19

COVID-19 has intensified into a global pandemic with over a million deaths worldwide. Experimental research analyses have been implemented and executed with the sole rationale to counteract SARS-CoV-2, which has initiated potent therapeutic strategy development in coherence with computational biolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2021-01, Vol.890, p.173720-173720, Article 173720
Hauptverfasser: Toor, Himanshu G., Banerjee, Devjani I., Lipsa Rath, Soumya, Darji, Siddhi A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173720
container_issue
container_start_page 173720
container_title European journal of pharmacology
container_volume 890
creator Toor, Himanshu G.
Banerjee, Devjani I.
Lipsa Rath, Soumya
Darji, Siddhi A.
description COVID-19 has intensified into a global pandemic with over a million deaths worldwide. Experimental research analyses have been implemented and executed with the sole rationale to counteract SARS-CoV-2, which has initiated potent therapeutic strategy development in coherence with computational biology validation focusing on the characterized viral drug targets signified by proteomic and genomic data. Spike glycoprotein is one of such potential drug target that promotes viral attachment to the host cellular membrane by binding to its receptor ACE-2 via its Receptor-Binding Domain (RBD). Multiple Sequence alignment and relative phylogenetic analysis revealed significant sequential disparities of SARS-CoV-2 as compared to previously encountered SARS-CoV and MERS-CoV strains. We implemented a drug re-purposing approach wherein the inhibitory efficacy of a cluster of thirty known drug candidates comprising of antivirals, antibiotics and phytochemicals (selection contingent on their present developmental status in underway clinical trials) was elucidated by subjecting them to molecular docking analyses against the spike protein RBD model (developed using homology modelling and validated using SAVES server 5.0) and the composite trimeric structures of spike glycoprotein of SARS-CoV-2. Our results indicated that Camostat, Favipiravir, Tenofovir, Raltegravir and Stavudine showed significant interactions with spike RBD of SARS-CoV-2. Proficient bioavailability coupled with no predicted in silico toxicity rendered them as prospective alternatives for designing and development of novel combinatorial therapy formulations for improving existing treatment regimes to combat COVID-19. [Display omitted] •COVID-19 has notoriously accentuated as a global pandemic.•The Spike Glycoprotein RBD represents a promising therapeutic drug target.•10 drugs displayed significant interactions with Spike glycoprotein.•Camostat, Favipiravir, Tenofovir, Raltegravir & Stavudine showed future prospects.
doi_str_mv 10.1016/j.ejphar.2020.173720
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7644434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014299920308128</els_id><sourcerecordid>33160938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-42897044abf133995dc166d5b15df4c54c4e575c21a0c5d3736cd355dc1e9a963</originalsourceid><addsrcrecordid>eNp9kdtuEzEQhi1UREPbN6gqv4CDj7vxTaVqy6FSpUoUems59uzGabJe2d5I4YJnZ0OgwA1XM-Px_8_YH0KXjM4ZZdW79RzWw8qmOad8OqpFzekrNGOLWhNaM36CZpQySbjW-hS9zXlNKVWaqzfoVAhWUS0WM_S9idthLLaE2NsN9mnscAIyjGmIOfQdLjZ1UH5mK8B5CM-Au83exSHFAqHHscWPN58fSROfCMc2Y9tjaFtwJewmQUm2QLfHJeIexqnahG-Am4enu1vC9Dl63dpNhotf8Qx9_fD-S_OJ3D98vGtu7omTlShE8oWuqZR22TIhtFbesaryasmUb6VT0klQtXKcWeqUF7WonBfqcA201ZU4Q9dH32FcbsE76A-bmCGFrU17E20w_3b6sDJd3Jm6klIKORnIo4FLMecE7YuWUXPgYdbmyMMceJgjj0l29ffcF9FvAH8Wg-n1uwDJZBegd-BDmr7Q-Bj-P-EHgh6gAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19</title><source>MEDLINE</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Toor, Himanshu G. ; Banerjee, Devjani I. ; Lipsa Rath, Soumya ; Darji, Siddhi A.</creator><creatorcontrib>Toor, Himanshu G. ; Banerjee, Devjani I. ; Lipsa Rath, Soumya ; Darji, Siddhi A.</creatorcontrib><description>COVID-19 has intensified into a global pandemic with over a million deaths worldwide. Experimental research analyses have been implemented and executed with the sole rationale to counteract SARS-CoV-2, which has initiated potent therapeutic strategy development in coherence with computational biology validation focusing on the characterized viral drug targets signified by proteomic and genomic data. Spike glycoprotein is one of such potential drug target that promotes viral attachment to the host cellular membrane by binding to its receptor ACE-2 via its Receptor-Binding Domain (RBD). Multiple Sequence alignment and relative phylogenetic analysis revealed significant sequential disparities of SARS-CoV-2 as compared to previously encountered SARS-CoV and MERS-CoV strains. We implemented a drug re-purposing approach wherein the inhibitory efficacy of a cluster of thirty known drug candidates comprising of antivirals, antibiotics and phytochemicals (selection contingent on their present developmental status in underway clinical trials) was elucidated by subjecting them to molecular docking analyses against the spike protein RBD model (developed using homology modelling and validated using SAVES server 5.0) and the composite trimeric structures of spike glycoprotein of SARS-CoV-2. Our results indicated that Camostat, Favipiravir, Tenofovir, Raltegravir and Stavudine showed significant interactions with spike RBD of SARS-CoV-2. Proficient bioavailability coupled with no predicted in silico toxicity rendered them as prospective alternatives for designing and development of novel combinatorial therapy formulations for improving existing treatment regimes to combat COVID-19. [Display omitted] •COVID-19 has notoriously accentuated as a global pandemic.•The Spike Glycoprotein RBD represents a promising therapeutic drug target.•10 drugs displayed significant interactions with Spike glycoprotein.•Camostat, Favipiravir, Tenofovir, Raltegravir &amp; Stavudine showed future prospects.</description><identifier>ISSN: 0014-2999</identifier><identifier>EISSN: 1879-0712</identifier><identifier>DOI: 10.1016/j.ejphar.2020.173720</identifier><identifier>PMID: 33160938</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amides - pharmacology ; Anti-Bacterial Agents - pharmacology ; Antiviral Agents - pharmacology ; Binding Sites ; Coronavirus ; COVID-19 ; COVID-19 - drug therapy ; Drug Repositioning ; Drug repurposing ; Full Length ; Gabexate - analogs &amp; derivatives ; Gabexate - pharmacology ; Molecular docking ; Molecular Docking Simulation ; Phytochemicals - pharmacology ; Protein Binding ; Pyrazines - pharmacology ; Raltegravir Potassium - pharmacology ; SARS-CoV ; SARS-CoV-2 ; Spike Glycoprotein, Coronavirus - metabolism ; Stavudine - pharmacology ; Tenofovir - pharmacology</subject><ispartof>European journal of pharmacology, 2021-01, Vol.890, p.173720-173720, Article 173720</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-42897044abf133995dc166d5b15df4c54c4e575c21a0c5d3736cd355dc1e9a963</citedby><cites>FETCH-LOGICAL-c463t-42897044abf133995dc166d5b15df4c54c4e575c21a0c5d3736cd355dc1e9a963</cites><orcidid>0000-0001-9454-0590 ; 0000-0002-4287-2398 ; 0000-0002-3502-7700 ; 0000-0003-0767-3016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014299920308128$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33160938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toor, Himanshu G.</creatorcontrib><creatorcontrib>Banerjee, Devjani I.</creatorcontrib><creatorcontrib>Lipsa Rath, Soumya</creatorcontrib><creatorcontrib>Darji, Siddhi A.</creatorcontrib><title>Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19</title><title>European journal of pharmacology</title><addtitle>Eur J Pharmacol</addtitle><description>COVID-19 has intensified into a global pandemic with over a million deaths worldwide. Experimental research analyses have been implemented and executed with the sole rationale to counteract SARS-CoV-2, which has initiated potent therapeutic strategy development in coherence with computational biology validation focusing on the characterized viral drug targets signified by proteomic and genomic data. Spike glycoprotein is one of such potential drug target that promotes viral attachment to the host cellular membrane by binding to its receptor ACE-2 via its Receptor-Binding Domain (RBD). Multiple Sequence alignment and relative phylogenetic analysis revealed significant sequential disparities of SARS-CoV-2 as compared to previously encountered SARS-CoV and MERS-CoV strains. We implemented a drug re-purposing approach wherein the inhibitory efficacy of a cluster of thirty known drug candidates comprising of antivirals, antibiotics and phytochemicals (selection contingent on their present developmental status in underway clinical trials) was elucidated by subjecting them to molecular docking analyses against the spike protein RBD model (developed using homology modelling and validated using SAVES server 5.0) and the composite trimeric structures of spike glycoprotein of SARS-CoV-2. Our results indicated that Camostat, Favipiravir, Tenofovir, Raltegravir and Stavudine showed significant interactions with spike RBD of SARS-CoV-2. Proficient bioavailability coupled with no predicted in silico toxicity rendered them as prospective alternatives for designing and development of novel combinatorial therapy formulations for improving existing treatment regimes to combat COVID-19. [Display omitted] •COVID-19 has notoriously accentuated as a global pandemic.•The Spike Glycoprotein RBD represents a promising therapeutic drug target.•10 drugs displayed significant interactions with Spike glycoprotein.•Camostat, Favipiravir, Tenofovir, Raltegravir &amp; Stavudine showed future prospects.</description><subject>Amides - pharmacology</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antiviral Agents - pharmacology</subject><subject>Binding Sites</subject><subject>Coronavirus</subject><subject>COVID-19</subject><subject>COVID-19 - drug therapy</subject><subject>Drug Repositioning</subject><subject>Drug repurposing</subject><subject>Full Length</subject><subject>Gabexate - analogs &amp; derivatives</subject><subject>Gabexate - pharmacology</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Phytochemicals - pharmacology</subject><subject>Protein Binding</subject><subject>Pyrazines - pharmacology</subject><subject>Raltegravir Potassium - pharmacology</subject><subject>SARS-CoV</subject><subject>SARS-CoV-2</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><subject>Stavudine - pharmacology</subject><subject>Tenofovir - pharmacology</subject><issn>0014-2999</issn><issn>1879-0712</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdtuEzEQhi1UREPbN6gqv4CDj7vxTaVqy6FSpUoUems59uzGabJe2d5I4YJnZ0OgwA1XM-Px_8_YH0KXjM4ZZdW79RzWw8qmOad8OqpFzekrNGOLWhNaM36CZpQySbjW-hS9zXlNKVWaqzfoVAhWUS0WM_S9idthLLaE2NsN9mnscAIyjGmIOfQdLjZ1UH5mK8B5CM-Au83exSHFAqHHscWPN58fSROfCMc2Y9tjaFtwJewmQUm2QLfHJeIexqnahG-Am4enu1vC9Dl63dpNhotf8Qx9_fD-S_OJ3D98vGtu7omTlShE8oWuqZR22TIhtFbesaryasmUb6VT0klQtXKcWeqUF7WonBfqcA201ZU4Q9dH32FcbsE76A-bmCGFrU17E20w_3b6sDJd3Jm6klIKORnIo4FLMecE7YuWUXPgYdbmyMMceJgjj0l29ffcF9FvAH8Wg-n1uwDJZBegd-BDmr7Q-Bj-P-EHgh6gAg</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>Toor, Himanshu G.</creator><creator>Banerjee, Devjani I.</creator><creator>Lipsa Rath, Soumya</creator><creator>Darji, Siddhi A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9454-0590</orcidid><orcidid>https://orcid.org/0000-0002-4287-2398</orcidid><orcidid>https://orcid.org/0000-0002-3502-7700</orcidid><orcidid>https://orcid.org/0000-0003-0767-3016</orcidid></search><sort><creationdate>20210105</creationdate><title>Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19</title><author>Toor, Himanshu G. ; Banerjee, Devjani I. ; Lipsa Rath, Soumya ; Darji, Siddhi A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-42897044abf133995dc166d5b15df4c54c4e575c21a0c5d3736cd355dc1e9a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amides - pharmacology</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antiviral Agents - pharmacology</topic><topic>Binding Sites</topic><topic>Coronavirus</topic><topic>COVID-19</topic><topic>COVID-19 - drug therapy</topic><topic>Drug Repositioning</topic><topic>Drug repurposing</topic><topic>Full Length</topic><topic>Gabexate - analogs &amp; derivatives</topic><topic>Gabexate - pharmacology</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Phytochemicals - pharmacology</topic><topic>Protein Binding</topic><topic>Pyrazines - pharmacology</topic><topic>Raltegravir Potassium - pharmacology</topic><topic>SARS-CoV</topic><topic>SARS-CoV-2</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><topic>Stavudine - pharmacology</topic><topic>Tenofovir - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toor, Himanshu G.</creatorcontrib><creatorcontrib>Banerjee, Devjani I.</creatorcontrib><creatorcontrib>Lipsa Rath, Soumya</creatorcontrib><creatorcontrib>Darji, Siddhi A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toor, Himanshu G.</au><au>Banerjee, Devjani I.</au><au>Lipsa Rath, Soumya</au><au>Darji, Siddhi A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19</atitle><jtitle>European journal of pharmacology</jtitle><addtitle>Eur J Pharmacol</addtitle><date>2021-01-05</date><risdate>2021</risdate><volume>890</volume><spage>173720</spage><epage>173720</epage><pages>173720-173720</pages><artnum>173720</artnum><issn>0014-2999</issn><eissn>1879-0712</eissn><abstract>COVID-19 has intensified into a global pandemic with over a million deaths worldwide. Experimental research analyses have been implemented and executed with the sole rationale to counteract SARS-CoV-2, which has initiated potent therapeutic strategy development in coherence with computational biology validation focusing on the characterized viral drug targets signified by proteomic and genomic data. Spike glycoprotein is one of such potential drug target that promotes viral attachment to the host cellular membrane by binding to its receptor ACE-2 via its Receptor-Binding Domain (RBD). Multiple Sequence alignment and relative phylogenetic analysis revealed significant sequential disparities of SARS-CoV-2 as compared to previously encountered SARS-CoV and MERS-CoV strains. We implemented a drug re-purposing approach wherein the inhibitory efficacy of a cluster of thirty known drug candidates comprising of antivirals, antibiotics and phytochemicals (selection contingent on their present developmental status in underway clinical trials) was elucidated by subjecting them to molecular docking analyses against the spike protein RBD model (developed using homology modelling and validated using SAVES server 5.0) and the composite trimeric structures of spike glycoprotein of SARS-CoV-2. Our results indicated that Camostat, Favipiravir, Tenofovir, Raltegravir and Stavudine showed significant interactions with spike RBD of SARS-CoV-2. Proficient bioavailability coupled with no predicted in silico toxicity rendered them as prospective alternatives for designing and development of novel combinatorial therapy formulations for improving existing treatment regimes to combat COVID-19. [Display omitted] •COVID-19 has notoriously accentuated as a global pandemic.•The Spike Glycoprotein RBD represents a promising therapeutic drug target.•10 drugs displayed significant interactions with Spike glycoprotein.•Camostat, Favipiravir, Tenofovir, Raltegravir &amp; Stavudine showed future prospects.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33160938</pmid><doi>10.1016/j.ejphar.2020.173720</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9454-0590</orcidid><orcidid>https://orcid.org/0000-0002-4287-2398</orcidid><orcidid>https://orcid.org/0000-0002-3502-7700</orcidid><orcidid>https://orcid.org/0000-0003-0767-3016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-2999
ispartof European journal of pharmacology, 2021-01, Vol.890, p.173720-173720, Article 173720
issn 0014-2999
1879-0712
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7644434
source MEDLINE; ScienceDirect Freedom Collection (Elsevier)
subjects Amides - pharmacology
Anti-Bacterial Agents - pharmacology
Antiviral Agents - pharmacology
Binding Sites
Coronavirus
COVID-19
COVID-19 - drug therapy
Drug Repositioning
Drug repurposing
Full Length
Gabexate - analogs & derivatives
Gabexate - pharmacology
Molecular docking
Molecular Docking Simulation
Phytochemicals - pharmacology
Protein Binding
Pyrazines - pharmacology
Raltegravir Potassium - pharmacology
SARS-CoV
SARS-CoV-2
Spike Glycoprotein, Coronavirus - metabolism
Stavudine - pharmacology
Tenofovir - pharmacology
title Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T18%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20drug%20re-purposing%20targeting%20the%20spike%20glycoprotein%20of%20SARS-CoV-2%20as%20an%20effective%20strategy%20to%20neutralize%20COVID-19&rft.jtitle=European%20journal%20of%20pharmacology&rft.au=Toor,%20Himanshu%20G.&rft.date=2021-01-05&rft.volume=890&rft.spage=173720&rft.epage=173720&rft.pages=173720-173720&rft.artnum=173720&rft.issn=0014-2999&rft.eissn=1879-0712&rft_id=info:doi/10.1016/j.ejphar.2020.173720&rft_dat=%3Cpubmed_cross%3E33160938%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33160938&rft_els_id=S0014299920308128&rfr_iscdi=true