Thermoelectric properties of MoC monolayers from first-principles calculations

The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2020-12, Vol.10 (12), p.125220-125220-7, Article 125220
Hauptverfasser: Wang, Yan, Zhou, Yu, Liu, Xiao-Ping, Zeng, Zhao-Yi, Hu, Cui-E., Chen, Xiang-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125220-7
container_issue 12
container_start_page 125220
container_title AIP advances
container_volume 10
creator Wang, Yan
Zhou, Yu
Liu, Xiao-Ping
Zeng, Zhao-Yi
Hu, Cui-E.
Chen, Xiang-Rong
description The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/mK. The high Seebeck coefficient, indicating high thermoelectricity, is found in both p-type and n-type MoC monolayers. This coefficient increases with temperature. The electronic conductivity for the p-type is higher than for the n-type one because the valance band is much more delocalized than the conduction band around the Fermi level. However, the calculated electronic thermal conductivity is essentially independent of temperature. The thermoelectric figure of merit (ZT) value of the n-type doped 2D-MoC is smaller than that of the p-type; thus, the thermoelectric properties are dominated by the p-type.
doi_str_mv 10.1063/5.0021075
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000600143700006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_67c92346140f4c66a29196674d435756</doaj_id><sourcerecordid>2469875735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fd8ecaea553cc84c91bb4183951242044ed20e2bd1fdd3c275fa94c3d4dd4d43</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhqMKJBDlwD-I1FOLAv5OfKwioEhQLnu3vONx61U2Tu1sK_49XoIol6JaljwaPfPOzOuqOqPkghLFL-UFIYySVn6ojhmVXcMZUwdv4qPqNOcNKUdoSjpxXH1f_cS0jTggzClAPaU4YZoD5jr6-j729TaOcbCPmHLtU9zWPqQ8N1MKI4RpKBzYAXaDnUMc88fq0Nsh4-nLe1Ktrq9W_bfm7uHmtv961wDXfG686xAsWik5QCdA0_Va0I5rSZlgRAh0jCBbO-qd48Ba6a0WwJ1w5Qp-Ut0usi7ajSmzbG16NNEG85yI6YexZQkY0KgWNONCUUG8AKUs01Qr1e5lZCtV0fq0aJXVf-0wz2YTd2ks0xsmlO5a2XJZqM8LBSnmnNC_dqXE7M030ryYX9jzhf2D6-gzBBwBX_liviKECt7u_2Hfv_t_ug_zs9F93I1zKf2ylJaqJf_uVP-Ef8f0FzST8_wJ4eqyOQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469875735</pqid></control><display><type>article</type><title>Thermoelectric properties of MoC monolayers from first-principles calculations</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yan ; Zhou, Yu ; Liu, Xiao-Ping ; Zeng, Zhao-Yi ; Hu, Cui-E. ; Chen, Xiang-Rong</creator><creatorcontrib>Wang, Yan ; Zhou, Yu ; Liu, Xiao-Ping ; Zeng, Zhao-Yi ; Hu, Cui-E. ; Chen, Xiang-Rong</creatorcontrib><description>The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/mK. The high Seebeck coefficient, indicating high thermoelectricity, is found in both p-type and n-type MoC monolayers. This coefficient increases with temperature. The electronic conductivity for the p-type is higher than for the n-type one because the valance band is much more delocalized than the conduction band around the Fermi level. However, the calculated electronic thermal conductivity is essentially independent of temperature. The thermoelectric figure of merit (ZT) value of the n-type doped 2D-MoC is smaller than that of the p-type; thus, the thermoelectric properties are dominated by the p-type.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0021075</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Conduction bands ; Figure of merit ; First principles ; Heat conductivity ; Heat transfer ; Materials Science ; Materials Science, Multidisciplinary ; Mathematical analysis ; Monolayers ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Properties (attributes) ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Seebeck effect ; Technology ; Thermal conductivity ; Thermoelectricity ; Transport theory ; Two dimensional materials</subject><ispartof>AIP advances, 2020-12, Vol.10 (12), p.125220-125220-7, Article 125220</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000600143700006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c393t-fd8ecaea553cc84c91bb4183951242044ed20e2bd1fdd3c275fa94c3d4dd4d43</citedby><cites>FETCH-LOGICAL-c393t-fd8ecaea553cc84c91bb4183951242044ed20e2bd1fdd3c275fa94c3d4dd4d43</cites><orcidid>0000-0002-0127-3452 ; 0000-0002-2521-8001 ; 0000-0003-4528-2198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Liu, Xiao-Ping</creatorcontrib><creatorcontrib>Zeng, Zhao-Yi</creatorcontrib><creatorcontrib>Hu, Cui-E.</creatorcontrib><creatorcontrib>Chen, Xiang-Rong</creatorcontrib><title>Thermoelectric properties of MoC monolayers from first-principles calculations</title><title>AIP advances</title><addtitle>AIP ADV</addtitle><description>The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/mK. The high Seebeck coefficient, indicating high thermoelectricity, is found in both p-type and n-type MoC monolayers. This coefficient increases with temperature. The electronic conductivity for the p-type is higher than for the n-type one because the valance band is much more delocalized than the conduction band around the Fermi level. However, the calculated electronic thermal conductivity is essentially independent of temperature. The thermoelectric figure of merit (ZT) value of the n-type doped 2D-MoC is smaller than that of the p-type; thus, the thermoelectric properties are dominated by the p-type.</description><subject>Conduction bands</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mathematical analysis</subject><subject>Monolayers</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Properties (attributes)</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Seebeck effect</subject><subject>Technology</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport theory</subject><subject>Two dimensional materials</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1P3DAQhqMKJBDlwD-I1FOLAv5OfKwioEhQLnu3vONx61U2Tu1sK_49XoIol6JaljwaPfPOzOuqOqPkghLFL-UFIYySVn6ojhmVXcMZUwdv4qPqNOcNKUdoSjpxXH1f_cS0jTggzClAPaU4YZoD5jr6-j729TaOcbCPmHLtU9zWPqQ8N1MKI4RpKBzYAXaDnUMc88fq0Nsh4-nLe1Ktrq9W_bfm7uHmtv961wDXfG686xAsWik5QCdA0_Va0I5rSZlgRAh0jCBbO-qd48Ba6a0WwJ1w5Qp-Ut0usi7ajSmzbG16NNEG85yI6YexZQkY0KgWNONCUUG8AKUs01Qr1e5lZCtV0fq0aJXVf-0wz2YTd2ks0xsmlO5a2XJZqM8LBSnmnNC_dqXE7M030ryYX9jzhf2D6-gzBBwBX_liviKECt7u_2Hfv_t_ug_zs9F93I1zKf2ylJaqJf_uVP-Ef8f0FzST8_wJ4eqyOQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Wang, Yan</creator><creator>Zhou, Yu</creator><creator>Liu, Xiao-Ping</creator><creator>Zeng, Zhao-Yi</creator><creator>Hu, Cui-E.</creator><creator>Chen, Xiang-Rong</creator><general>AIP Publishing</general><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0127-3452</orcidid><orcidid>https://orcid.org/0000-0002-2521-8001</orcidid><orcidid>https://orcid.org/0000-0003-4528-2198</orcidid></search><sort><creationdate>20201201</creationdate><title>Thermoelectric properties of MoC monolayers from first-principles calculations</title><author>Wang, Yan ; Zhou, Yu ; Liu, Xiao-Ping ; Zeng, Zhao-Yi ; Hu, Cui-E. ; Chen, Xiang-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fd8ecaea553cc84c91bb4183951242044ed20e2bd1fdd3c275fa94c3d4dd4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conduction bands</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mathematical analysis</topic><topic>Monolayers</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Properties (attributes)</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Seebeck effect</topic><topic>Technology</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport theory</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Liu, Xiao-Ping</creatorcontrib><creatorcontrib>Zeng, Zhao-Yi</creatorcontrib><creatorcontrib>Hu, Cui-E.</creatorcontrib><creatorcontrib>Chen, Xiang-Rong</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Zhou, Yu</au><au>Liu, Xiao-Ping</au><au>Zeng, Zhao-Yi</au><au>Hu, Cui-E.</au><au>Chen, Xiang-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of MoC monolayers from first-principles calculations</atitle><jtitle>AIP advances</jtitle><stitle>AIP ADV</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>12</issue><spage>125220</spage><epage>125220-7</epage><pages>125220-125220-7</pages><artnum>125220</artnum><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/mK. The high Seebeck coefficient, indicating high thermoelectricity, is found in both p-type and n-type MoC monolayers. This coefficient increases with temperature. The electronic conductivity for the p-type is higher than for the n-type one because the valance band is much more delocalized than the conduction band around the Fermi level. However, the calculated electronic thermal conductivity is essentially independent of temperature. The thermoelectric figure of merit (ZT) value of the n-type doped 2D-MoC is smaller than that of the p-type; thus, the thermoelectric properties are dominated by the p-type.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0021075</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0127-3452</orcidid><orcidid>https://orcid.org/0000-0002-2521-8001</orcidid><orcidid>https://orcid.org/0000-0003-4528-2198</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2020-12, Vol.10 (12), p.125220-125220-7, Article 125220
issn 2158-3226
2158-3226
language eng
recordid cdi_webofscience_primary_000600143700006
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Conduction bands
Figure of merit
First principles
Heat conductivity
Heat transfer
Materials Science
Materials Science, Multidisciplinary
Mathematical analysis
Monolayers
Nanoscience & Nanotechnology
Physical Sciences
Physics
Physics, Applied
Properties (attributes)
Science & Technology
Science & Technology - Other Topics
Seebeck effect
Technology
Thermal conductivity
Thermoelectricity
Transport theory
Two dimensional materials
title Thermoelectric properties of MoC monolayers from first-principles calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20MoC%20monolayers%20from%20first-principles%20calculations&rft.jtitle=AIP%20advances&rft.au=Wang,%20Yan&rft.date=2020-12-01&rft.volume=10&rft.issue=12&rft.spage=125220&rft.epage=125220-7&rft.pages=125220-125220-7&rft.artnum=125220&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0021075&rft_dat=%3Cproquest_webof%3E2469875735%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469875735&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_67c92346140f4c66a29196674d435756&rfr_iscdi=true