Thermoelectric properties of MoC monolayers from first-principles calculations
The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/m...
Gespeichert in:
Veröffentlicht in: | AIP advances 2020-12, Vol.10 (12), p.125220-125220-7, Article 125220 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125220-7 |
---|---|
container_issue | 12 |
container_start_page | 125220 |
container_title | AIP advances |
container_volume | 10 |
creator | Wang, Yan Zhou, Yu Liu, Xiao-Ping Zeng, Zhao-Yi Hu, Cui-E. Chen, Xiang-Rong |
description | The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/mK. The high Seebeck coefficient, indicating high thermoelectricity, is found in both p-type and n-type MoC monolayers. This coefficient increases with temperature. The electronic conductivity for the p-type is higher than for the n-type one because the valance band is much more delocalized than the conduction band around the Fermi level. However, the calculated electronic thermal conductivity is essentially independent of temperature. The thermoelectric figure of merit (ZT) value of the n-type doped 2D-MoC is smaller than that of the p-type; thus, the thermoelectric properties are dominated by the p-type. |
doi_str_mv | 10.1063/5.0021075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000600143700006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_67c92346140f4c66a29196674d435756</doaj_id><sourcerecordid>2469875735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fd8ecaea553cc84c91bb4183951242044ed20e2bd1fdd3c275fa94c3d4dd4d43</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhqMKJBDlwD-I1FOLAv5OfKwioEhQLnu3vONx61U2Tu1sK_49XoIol6JaljwaPfPOzOuqOqPkghLFL-UFIYySVn6ojhmVXcMZUwdv4qPqNOcNKUdoSjpxXH1f_cS0jTggzClAPaU4YZoD5jr6-j729TaOcbCPmHLtU9zWPqQ8N1MKI4RpKBzYAXaDnUMc88fq0Nsh4-nLe1Ktrq9W_bfm7uHmtv961wDXfG686xAsWik5QCdA0_Va0I5rSZlgRAh0jCBbO-qd48Ba6a0WwJ1w5Qp-Ut0usi7ajSmzbG16NNEG85yI6YexZQkY0KgWNONCUUG8AKUs01Qr1e5lZCtV0fq0aJXVf-0wz2YTd2ks0xsmlO5a2XJZqM8LBSnmnNC_dqXE7M030ryYX9jzhf2D6-gzBBwBX_liviKECt7u_2Hfv_t_ug_zs9F93I1zKf2ylJaqJf_uVP-Ef8f0FzST8_wJ4eqyOQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469875735</pqid></control><display><type>article</type><title>Thermoelectric properties of MoC monolayers from first-principles calculations</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Yan ; Zhou, Yu ; Liu, Xiao-Ping ; Zeng, Zhao-Yi ; Hu, Cui-E. ; Chen, Xiang-Rong</creator><creatorcontrib>Wang, Yan ; Zhou, Yu ; Liu, Xiao-Ping ; Zeng, Zhao-Yi ; Hu, Cui-E. ; Chen, Xiang-Rong</creatorcontrib><description>The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/mK. The high Seebeck coefficient, indicating high thermoelectricity, is found in both p-type and n-type MoC monolayers. This coefficient increases with temperature. The electronic conductivity for the p-type is higher than for the n-type one because the valance band is much more delocalized than the conduction band around the Fermi level. However, the calculated electronic thermal conductivity is essentially independent of temperature. The thermoelectric figure of merit (ZT) value of the n-type doped 2D-MoC is smaller than that of the p-type; thus, the thermoelectric properties are dominated by the p-type.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0021075</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Conduction bands ; Figure of merit ; First principles ; Heat conductivity ; Heat transfer ; Materials Science ; Materials Science, Multidisciplinary ; Mathematical analysis ; Monolayers ; Nanoscience & Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Properties (attributes) ; Science & Technology ; Science & Technology - Other Topics ; Seebeck effect ; Technology ; Thermal conductivity ; Thermoelectricity ; Transport theory ; Two dimensional materials</subject><ispartof>AIP advances, 2020-12, Vol.10 (12), p.125220-125220-7, Article 125220</ispartof><rights>Author(s)</rights><rights>2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000600143700006</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c393t-fd8ecaea553cc84c91bb4183951242044ed20e2bd1fdd3c275fa94c3d4dd4d43</citedby><cites>FETCH-LOGICAL-c393t-fd8ecaea553cc84c91bb4183951242044ed20e2bd1fdd3c275fa94c3d4dd4d43</cites><orcidid>0000-0002-0127-3452 ; 0000-0002-2521-8001 ; 0000-0003-4528-2198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Liu, Xiao-Ping</creatorcontrib><creatorcontrib>Zeng, Zhao-Yi</creatorcontrib><creatorcontrib>Hu, Cui-E.</creatorcontrib><creatorcontrib>Chen, Xiang-Rong</creatorcontrib><title>Thermoelectric properties of MoC monolayers from first-principles calculations</title><title>AIP advances</title><addtitle>AIP ADV</addtitle><description>The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/mK. The high Seebeck coefficient, indicating high thermoelectricity, is found in both p-type and n-type MoC monolayers. This coefficient increases with temperature. The electronic conductivity for the p-type is higher than for the n-type one because the valance band is much more delocalized than the conduction band around the Fermi level. However, the calculated electronic thermal conductivity is essentially independent of temperature. The thermoelectric figure of merit (ZT) value of the n-type doped 2D-MoC is smaller than that of the p-type; thus, the thermoelectric properties are dominated by the p-type.</description><subject>Conduction bands</subject><subject>Figure of merit</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mathematical analysis</subject><subject>Monolayers</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Properties (attributes)</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Seebeck effect</subject><subject>Technology</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport theory</subject><subject>Two dimensional materials</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1P3DAQhqMKJBDlwD-I1FOLAv5OfKwioEhQLnu3vONx61U2Tu1sK_49XoIol6JaljwaPfPOzOuqOqPkghLFL-UFIYySVn6ojhmVXcMZUwdv4qPqNOcNKUdoSjpxXH1f_cS0jTggzClAPaU4YZoD5jr6-j729TaOcbCPmHLtU9zWPqQ8N1MKI4RpKBzYAXaDnUMc88fq0Nsh4-nLe1Ktrq9W_bfm7uHmtv961wDXfG686xAsWik5QCdA0_Va0I5rSZlgRAh0jCBbO-qd48Ba6a0WwJ1w5Qp-Ut0usi7ajSmzbG16NNEG85yI6YexZQkY0KgWNONCUUG8AKUs01Qr1e5lZCtV0fq0aJXVf-0wz2YTd2ks0xsmlO5a2XJZqM8LBSnmnNC_dqXE7M030ryYX9jzhf2D6-gzBBwBX_liviKECt7u_2Hfv_t_ug_zs9F93I1zKf2ylJaqJf_uVP-Ef8f0FzST8_wJ4eqyOQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Wang, Yan</creator><creator>Zhou, Yu</creator><creator>Liu, Xiao-Ping</creator><creator>Zeng, Zhao-Yi</creator><creator>Hu, Cui-E.</creator><creator>Chen, Xiang-Rong</creator><general>AIP Publishing</general><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0127-3452</orcidid><orcidid>https://orcid.org/0000-0002-2521-8001</orcidid><orcidid>https://orcid.org/0000-0003-4528-2198</orcidid></search><sort><creationdate>20201201</creationdate><title>Thermoelectric properties of MoC monolayers from first-principles calculations</title><author>Wang, Yan ; Zhou, Yu ; Liu, Xiao-Ping ; Zeng, Zhao-Yi ; Hu, Cui-E. ; Chen, Xiang-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fd8ecaea553cc84c91bb4183951242044ed20e2bd1fdd3c275fa94c3d4dd4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conduction bands</topic><topic>Figure of merit</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mathematical analysis</topic><topic>Monolayers</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Properties (attributes)</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Seebeck effect</topic><topic>Technology</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport theory</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Liu, Xiao-Ping</creatorcontrib><creatorcontrib>Zeng, Zhao-Yi</creatorcontrib><creatorcontrib>Hu, Cui-E.</creatorcontrib><creatorcontrib>Chen, Xiang-Rong</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Zhou, Yu</au><au>Liu, Xiao-Ping</au><au>Zeng, Zhao-Yi</au><au>Hu, Cui-E.</au><au>Chen, Xiang-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of MoC monolayers from first-principles calculations</atitle><jtitle>AIP advances</jtitle><stitle>AIP ADV</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>12</issue><spage>125220</spage><epage>125220-7</epage><pages>125220-125220-7</pages><artnum>125220</artnum><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The thermoelectric properties of molybdenum monocarbide (MoC) monolayers, a new 2D material, are calculated from first-principles calculations using Boltzmann transport theory. The indirect bandgap of this monolayer semiconductor is 0.51 eV, and the calculated lattice thermal conductivity is 7.7 W/mK. The high Seebeck coefficient, indicating high thermoelectricity, is found in both p-type and n-type MoC monolayers. This coefficient increases with temperature. The electronic conductivity for the p-type is higher than for the n-type one because the valance band is much more delocalized than the conduction band around the Fermi level. However, the calculated electronic thermal conductivity is essentially independent of temperature. The thermoelectric figure of merit (ZT) value of the n-type doped 2D-MoC is smaller than that of the p-type; thus, the thermoelectric properties are dominated by the p-type.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0021075</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0127-3452</orcidid><orcidid>https://orcid.org/0000-0002-2521-8001</orcidid><orcidid>https://orcid.org/0000-0003-4528-2198</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2020-12, Vol.10 (12), p.125220-125220-7, Article 125220 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_webofscience_primary_000600143700006 |
source | DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Conduction bands Figure of merit First principles Heat conductivity Heat transfer Materials Science Materials Science, Multidisciplinary Mathematical analysis Monolayers Nanoscience & Nanotechnology Physical Sciences Physics Physics, Applied Properties (attributes) Science & Technology Science & Technology - Other Topics Seebeck effect Technology Thermal conductivity Thermoelectricity Transport theory Two dimensional materials |
title | Thermoelectric properties of MoC monolayers from first-principles calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20MoC%20monolayers%20from%20first-principles%20calculations&rft.jtitle=AIP%20advances&rft.au=Wang,%20Yan&rft.date=2020-12-01&rft.volume=10&rft.issue=12&rft.spage=125220&rft.epage=125220-7&rft.pages=125220-125220-7&rft.artnum=125220&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0021075&rft_dat=%3Cproquest_webof%3E2469875735%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469875735&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_67c92346140f4c66a29196674d435756&rfr_iscdi=true |