A GBDT‐SOA approach for the system modelling of optimal energy management in grid‐connected micro‐grid system

Summary In this manuscript, a hybrid approach for energy management in grid connected MG system is proposed. The grid connected MG system has photovoltaic (PV), wind turbine (WT), micro turbine (MT), battery. The proposed hybrid approach is the consolidation of both the Gradient Boosting Decision Tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2021-04, Vol.45 (5), p.6765-6783
Hauptverfasser: Arumugam, Prakash, Kuppan, Vasudevan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6783
container_issue 5
container_start_page 6765
container_title International journal of energy research
container_volume 45
creator Arumugam, Prakash
Kuppan, Vasudevan
description Summary In this manuscript, a hybrid approach for energy management in grid connected MG system is proposed. The grid connected MG system has photovoltaic (PV), wind turbine (WT), micro turbine (MT), battery. The proposed hybrid approach is the consolidation of both the Gradient Boosting Decision Trees (GBDT) and Sandpiper Optimization Algorithm (SOA) and this way the proposed technique is named as GBDT‐SOA. Here, at grid connected micro‐grid configuration the required load demand is ever monitored by the GBDT approach. The perfect combination of the MG is optimized by SOA considering the predicted load requirement. The fuel cost including grid power hourly power variation, operation and maintenance cost of the grid connected micro‐grid system is defined as the objective of the proposed technique. The constraints are power demand, renewable energy sources, state of charge of storage elements. Batteries have been used as an energy source, to stabilize and allow the renewable power system units to maintain running in a steady, stable output power. At that point, the proposed model is executed in MATLAB/Simulink work site and the performance is analyzed with existing techniques, such as BFO, SOA and SSA. The efficiency of the sources like photovoltaic, wind turbine, micro turbine, and battery using proposed technique is 95.9375%, 92.113%, 94.387% and 93.7560%.
doi_str_mv 10.1002/er.6270
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000599580400001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509259967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3610-e3fdd8ecd36116663656577efc2a80b2785f990e1b04843c76f495b9813c2273</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWC_4CgEXLmT0ZC6ZybLWKwiCdtHdMM2c1MhMUpMU6c5H8Bl9ElNbxI3gKpfznf_85yfkiMEZA0jP0Z3xtIQtMmAgRMJYPtkmA8h4lggoJ7tkz_sXgFhj5YD4Ib25uBx_vn88PQxpM58728hnqqyj4RmpX_qAPe1ti12nzYxaRe086L7pKBp0syXtG9PMsEcTqDZ05nQbxaQ1BmXAlvZaOht_VoWN3AHZUU3n8XBz7pPx9dV4dJvcP9zcjYb3icw4gwQz1bYVyja-GOc84wUvyhKVTJsKpmlZFUoIQDaFvMozWXKVi2IqKpbJNC2zfXK8lo07vS7Qh_rFLpyJE-u0AJEWQvAVdbKmok3vHap67uJ6blkzqFeB1ujqVaCRrNbkG06t8lKjkfhDx0SjYFFBHm_ARjo0QVszsgsTYuvp_1t_0brD5V9-6qvHb1tfQiuZIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509259967</pqid></control><display><type>article</type><title>A GBDT‐SOA approach for the system modelling of optimal energy management in grid‐connected micro‐grid system</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Arumugam, Prakash ; Kuppan, Vasudevan</creator><creatorcontrib>Arumugam, Prakash ; Kuppan, Vasudevan</creatorcontrib><description>Summary In this manuscript, a hybrid approach for energy management in grid connected MG system is proposed. The grid connected MG system has photovoltaic (PV), wind turbine (WT), micro turbine (MT), battery. The proposed hybrid approach is the consolidation of both the Gradient Boosting Decision Trees (GBDT) and Sandpiper Optimization Algorithm (SOA) and this way the proposed technique is named as GBDT‐SOA. Here, at grid connected micro‐grid configuration the required load demand is ever monitored by the GBDT approach. The perfect combination of the MG is optimized by SOA considering the predicted load requirement. The fuel cost including grid power hourly power variation, operation and maintenance cost of the grid connected micro‐grid system is defined as the objective of the proposed technique. The constraints are power demand, renewable energy sources, state of charge of storage elements. Batteries have been used as an energy source, to stabilize and allow the renewable power system units to maintain running in a steady, stable output power. At that point, the proposed model is executed in MATLAB/Simulink work site and the performance is analyzed with existing techniques, such as BFO, SOA and SSA. The efficiency of the sources like photovoltaic, wind turbine, micro turbine, and battery using proposed technique is 95.9375%, 92.113%, 94.387% and 93.7560%.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.6270</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Alternative energy sources ; Batteries ; Decision trees ; Energy &amp; Fuels ; Energy charge ; Energy management ; energy management system ; Energy resources ; Environmental management ; gradient boosting decision trees ; grid connected MG system ; Maintenance costs ; Nuclear Science &amp; Technology ; Optimization ; Photovoltaic cells ; Photovoltaics ; predicted load demand ; Renewable energy ; Renewable energy sources ; Renewable resources ; Resource management ; sandpiper optimization algorithm ; Science &amp; Technology ; Storage batteries ; Technology ; Turbine engines ; Turbines ; Wind power ; Wind turbines</subject><ispartof>International journal of energy research, 2021-04, Vol.45 (5), p.6765-6783</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000599580400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3610-e3fdd8ecd36116663656577efc2a80b2785f990e1b04843c76f495b9813c2273</citedby><cites>FETCH-LOGICAL-c3610-e3fdd8ecd36116663656577efc2a80b2785f990e1b04843c76f495b9813c2273</cites><orcidid>0000-0002-4656-6822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.6270$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.6270$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Arumugam, Prakash</creatorcontrib><creatorcontrib>Kuppan, Vasudevan</creatorcontrib><title>A GBDT‐SOA approach for the system modelling of optimal energy management in grid‐connected micro‐grid system</title><title>International journal of energy research</title><addtitle>INT J ENERG RES</addtitle><description>Summary In this manuscript, a hybrid approach for energy management in grid connected MG system is proposed. The grid connected MG system has photovoltaic (PV), wind turbine (WT), micro turbine (MT), battery. The proposed hybrid approach is the consolidation of both the Gradient Boosting Decision Trees (GBDT) and Sandpiper Optimization Algorithm (SOA) and this way the proposed technique is named as GBDT‐SOA. Here, at grid connected micro‐grid configuration the required load demand is ever monitored by the GBDT approach. The perfect combination of the MG is optimized by SOA considering the predicted load requirement. The fuel cost including grid power hourly power variation, operation and maintenance cost of the grid connected micro‐grid system is defined as the objective of the proposed technique. The constraints are power demand, renewable energy sources, state of charge of storage elements. Batteries have been used as an energy source, to stabilize and allow the renewable power system units to maintain running in a steady, stable output power. At that point, the proposed model is executed in MATLAB/Simulink work site and the performance is analyzed with existing techniques, such as BFO, SOA and SSA. The efficiency of the sources like photovoltaic, wind turbine, micro turbine, and battery using proposed technique is 95.9375%, 92.113%, 94.387% and 93.7560%.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Batteries</subject><subject>Decision trees</subject><subject>Energy &amp; Fuels</subject><subject>Energy charge</subject><subject>Energy management</subject><subject>energy management system</subject><subject>Energy resources</subject><subject>Environmental management</subject><subject>gradient boosting decision trees</subject><subject>grid connected MG system</subject><subject>Maintenance costs</subject><subject>Nuclear Science &amp; Technology</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>predicted load demand</subject><subject>Renewable energy</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Resource management</subject><subject>sandpiper optimization algorithm</subject><subject>Science &amp; Technology</subject><subject>Storage batteries</subject><subject>Technology</subject><subject>Turbine engines</subject><subject>Turbines</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMtKAzEUhoMoWC_4CgEXLmT0ZC6ZybLWKwiCdtHdMM2c1MhMUpMU6c5H8Bl9ElNbxI3gKpfznf_85yfkiMEZA0jP0Z3xtIQtMmAgRMJYPtkmA8h4lggoJ7tkz_sXgFhj5YD4Ib25uBx_vn88PQxpM58728hnqqyj4RmpX_qAPe1ti12nzYxaRe086L7pKBp0syXtG9PMsEcTqDZ05nQbxaQ1BmXAlvZaOht_VoWN3AHZUU3n8XBz7pPx9dV4dJvcP9zcjYb3icw4gwQz1bYVyja-GOc84wUvyhKVTJsKpmlZFUoIQDaFvMozWXKVi2IqKpbJNC2zfXK8lo07vS7Qh_rFLpyJE-u0AJEWQvAVdbKmok3vHap67uJ6blkzqFeB1ujqVaCRrNbkG06t8lKjkfhDx0SjYFFBHm_ARjo0QVszsgsTYuvp_1t_0brD5V9-6qvHb1tfQiuZIQ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Arumugam, Prakash</creator><creator>Kuppan, Vasudevan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>Hindawi Limited</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4656-6822</orcidid></search><sort><creationdate>202104</creationdate><title>A GBDT‐SOA approach for the system modelling of optimal energy management in grid‐connected micro‐grid system</title><author>Arumugam, Prakash ; Kuppan, Vasudevan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3610-e3fdd8ecd36116663656577efc2a80b2785f990e1b04843c76f495b9813c2273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Batteries</topic><topic>Decision trees</topic><topic>Energy &amp; Fuels</topic><topic>Energy charge</topic><topic>Energy management</topic><topic>energy management system</topic><topic>Energy resources</topic><topic>Environmental management</topic><topic>gradient boosting decision trees</topic><topic>grid connected MG system</topic><topic>Maintenance costs</topic><topic>Nuclear Science &amp; Technology</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>predicted load demand</topic><topic>Renewable energy</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Resource management</topic><topic>sandpiper optimization algorithm</topic><topic>Science &amp; Technology</topic><topic>Storage batteries</topic><topic>Technology</topic><topic>Turbine engines</topic><topic>Turbines</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arumugam, Prakash</creatorcontrib><creatorcontrib>Kuppan, Vasudevan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arumugam, Prakash</au><au>Kuppan, Vasudevan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A GBDT‐SOA approach for the system modelling of optimal energy management in grid‐connected micro‐grid system</atitle><jtitle>International journal of energy research</jtitle><stitle>INT J ENERG RES</stitle><date>2021-04</date><risdate>2021</risdate><volume>45</volume><issue>5</issue><spage>6765</spage><epage>6783</epage><pages>6765-6783</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary In this manuscript, a hybrid approach for energy management in grid connected MG system is proposed. The grid connected MG system has photovoltaic (PV), wind turbine (WT), micro turbine (MT), battery. The proposed hybrid approach is the consolidation of both the Gradient Boosting Decision Trees (GBDT) and Sandpiper Optimization Algorithm (SOA) and this way the proposed technique is named as GBDT‐SOA. Here, at grid connected micro‐grid configuration the required load demand is ever monitored by the GBDT approach. The perfect combination of the MG is optimized by SOA considering the predicted load requirement. The fuel cost including grid power hourly power variation, operation and maintenance cost of the grid connected micro‐grid system is defined as the objective of the proposed technique. The constraints are power demand, renewable energy sources, state of charge of storage elements. Batteries have been used as an energy source, to stabilize and allow the renewable power system units to maintain running in a steady, stable output power. At that point, the proposed model is executed in MATLAB/Simulink work site and the performance is analyzed with existing techniques, such as BFO, SOA and SSA. The efficiency of the sources like photovoltaic, wind turbine, micro turbine, and battery using proposed technique is 95.9375%, 92.113%, 94.387% and 93.7560%.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.6270</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4656-6822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2021-04, Vol.45 (5), p.6765-6783
issn 0363-907X
1099-114X
language eng
recordid cdi_webofscience_primary_000599580400001CitationCount
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Alternative energy sources
Batteries
Decision trees
Energy & Fuels
Energy charge
Energy management
energy management system
Energy resources
Environmental management
gradient boosting decision trees
grid connected MG system
Maintenance costs
Nuclear Science & Technology
Optimization
Photovoltaic cells
Photovoltaics
predicted load demand
Renewable energy
Renewable energy sources
Renewable resources
Resource management
sandpiper optimization algorithm
Science & Technology
Storage batteries
Technology
Turbine engines
Turbines
Wind power
Wind turbines
title A GBDT‐SOA approach for the system modelling of optimal energy management in grid‐connected micro‐grid system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20GBDT%E2%80%90SOA%20approach%20for%20the%20system%20modelling%20of%20optimal%20energy%20management%20in%20grid%E2%80%90connected%20micro%E2%80%90grid%20system&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Arumugam,%20Prakash&rft.date=2021-04&rft.volume=45&rft.issue=5&rft.spage=6765&rft.epage=6783&rft.pages=6765-6783&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.6270&rft_dat=%3Cproquest_webof%3E2509259967%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509259967&rft_id=info:pmid/&rfr_iscdi=true