Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials
Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high pow...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-12, Vol.8 (46), p.24675-24684 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24684 |
---|---|
container_issue | 46 |
container_start_page | 24675 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Wang, Yanzhao Chen, Zhanhua Huang, Hongfeng Wang, Dagang Liu, Danqing Wang, Lei |
description | Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high power factors. Herein, naphthalene diimide derivatives (NDI-1 and NDI-2) carrying a radical substituent of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) are designed and complexed with single-walled carbon nanotubes (SWCNTs) as both p-type and n-type thermoelectric composites. The introduction of the radical substituent remarkably improved the electrical conductivity by almost fifty percent compared to that of the NDI derivative without the radical substituent (NDI-0). The obtained radical-containing composites display greatly enhanced TE performance with highest power factors of 277.1 ± 5.4 μW m
−1
K
−2
for the p-type composite and 79.6 ± 1.7 μW m
−1
K
−2
for the n-type composite, respectively. Furthermore, the thermoelectric module based on NDI-1/SWCNT composite films consisting of five p-n junctions reaches a large output power of 2.81 μW under a 65 K temperature gradient. The enhanced electrical conductivities and TE performances of radical-containing NDI/SWCNT composite films are attributable to the improved doping level and charge transport process between the radical molecules and SWCNTs. This design strategy of introducing radical moieties into organic thermoelectric materials might be beneficial to the future application for high-performance p-type and n-type thermoelectric materials and devices.
Organic radical compound and SWCNT composites for high-performance p-type and n-type thermoelectric materials. |
doi_str_mv | 10.1039/d0ta08154j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA08154J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468746863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-1ada9cc436c17238d352fec96b97f8aa630f3c892c5c77db5411ab4a4407f3c93</originalsourceid><addsrcrecordid>eNpFkU1LxDAQhosoKOrFuxDwJlSTph_JUfwWwYuey3SSbrNsk5qkyv4c_6l1u-rAMC_MM-8c3iQ5YfSCUS4vFY1ABSvy5U5ykNGCplUuy90_LcR-chzCkk4lKC2lPEi-XvwCrEHiQRmEFUHXD260isDUCL5xlliwLo6NnpfBRB3Ip4kd0bYDi1oRvdIY_dbAqhGj-TBxTaL7BK8C6cyiSwftW-f7nwsypHE96M0TO8vYad-7XyPSQ9TewCocJXvtNPTxdh4mb3e3r9cP6fPL_eP11XOKnImYMlAgEXNeIqsyLhQvslajLBtZtQKg5LTlKGSGBVaVaoqcMWhyyHNaTQvJD5Oz2Xfw7n3UIdZLN3o7vayzvBTV1CWfqPOZQu9C8LqtB2968Oua0fonhfqGvl5tUnia4NMZ9gH_uP-U-De3eIiO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468746863</pqid></control><display><type>article</type><title>Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Yanzhao ; Chen, Zhanhua ; Huang, Hongfeng ; Wang, Dagang ; Liu, Danqing ; Wang, Lei</creator><creatorcontrib>Wang, Yanzhao ; Chen, Zhanhua ; Huang, Hongfeng ; Wang, Dagang ; Liu, Danqing ; Wang, Lei</creatorcontrib><description>Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high power factors. Herein, naphthalene diimide derivatives (NDI-1 and NDI-2) carrying a radical substituent of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) are designed and complexed with single-walled carbon nanotubes (SWCNTs) as both p-type and n-type thermoelectric composites. The introduction of the radical substituent remarkably improved the electrical conductivity by almost fifty percent compared to that of the NDI derivative without the radical substituent (NDI-0). The obtained radical-containing composites display greatly enhanced TE performance with highest power factors of 277.1 ± 5.4 μW m
−1
K
−2
for the p-type composite and 79.6 ± 1.7 μW m
−1
K
−2
for the n-type composite, respectively. Furthermore, the thermoelectric module based on NDI-1/SWCNT composite films consisting of five p-n junctions reaches a large output power of 2.81 μW under a 65 K temperature gradient. The enhanced electrical conductivities and TE performances of radical-containing NDI/SWCNT composite films are attributable to the improved doping level and charge transport process between the radical molecules and SWCNTs. This design strategy of introducing radical moieties into organic thermoelectric materials might be beneficial to the future application for high-performance p-type and n-type thermoelectric materials and devices.
Organic radical compound and SWCNT composites for high-performance p-type and n-type thermoelectric materials.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta08154j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transport ; Composite materials ; Conductivity ; Diimide ; Electrical conductivity ; Electrical junctions ; Electrical resistivity ; Film thickness ; Nanotechnology ; Nanotubes ; Naphthalene ; Organic chemistry ; P-n junctions ; Radicals ; Single wall carbon nanotubes ; Stability analysis ; Temperature gradients ; Thermal conductivity ; Thermal stability ; Thermoelectric materials ; Thickness measurement ; Toxicity ; Transport processes</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-12, Vol.8 (46), p.24675-24684</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-1ada9cc436c17238d352fec96b97f8aa630f3c892c5c77db5411ab4a4407f3c93</citedby><cites>FETCH-LOGICAL-c318t-1ada9cc436c17238d352fec96b97f8aa630f3c892c5c77db5411ab4a4407f3c93</cites><orcidid>0000-0002-2313-2095 ; 0000-0002-1075-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Wang, Yanzhao</creatorcontrib><creatorcontrib>Chen, Zhanhua</creatorcontrib><creatorcontrib>Huang, Hongfeng</creatorcontrib><creatorcontrib>Wang, Dagang</creatorcontrib><creatorcontrib>Liu, Danqing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high power factors. Herein, naphthalene diimide derivatives (NDI-1 and NDI-2) carrying a radical substituent of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) are designed and complexed with single-walled carbon nanotubes (SWCNTs) as both p-type and n-type thermoelectric composites. The introduction of the radical substituent remarkably improved the electrical conductivity by almost fifty percent compared to that of the NDI derivative without the radical substituent (NDI-0). The obtained radical-containing composites display greatly enhanced TE performance with highest power factors of 277.1 ± 5.4 μW m
−1
K
−2
for the p-type composite and 79.6 ± 1.7 μW m
−1
K
−2
for the n-type composite, respectively. Furthermore, the thermoelectric module based on NDI-1/SWCNT composite films consisting of five p-n junctions reaches a large output power of 2.81 μW under a 65 K temperature gradient. The enhanced electrical conductivities and TE performances of radical-containing NDI/SWCNT composite films are attributable to the improved doping level and charge transport process between the radical molecules and SWCNTs. This design strategy of introducing radical moieties into organic thermoelectric materials might be beneficial to the future application for high-performance p-type and n-type thermoelectric materials and devices.
Organic radical compound and SWCNT composites for high-performance p-type and n-type thermoelectric materials.</description><subject>Charge transport</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Diimide</subject><subject>Electrical conductivity</subject><subject>Electrical junctions</subject><subject>Electrical resistivity</subject><subject>Film thickness</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Naphthalene</subject><subject>Organic chemistry</subject><subject>P-n junctions</subject><subject>Radicals</subject><subject>Single wall carbon nanotubes</subject><subject>Stability analysis</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thermal stability</subject><subject>Thermoelectric materials</subject><subject>Thickness measurement</subject><subject>Toxicity</subject><subject>Transport processes</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LxDAQhosoKOrFuxDwJlSTph_JUfwWwYuey3SSbrNsk5qkyv4c_6l1u-rAMC_MM-8c3iQ5YfSCUS4vFY1ABSvy5U5ykNGCplUuy90_LcR-chzCkk4lKC2lPEi-XvwCrEHiQRmEFUHXD260isDUCL5xlliwLo6NnpfBRB3Ip4kd0bYDi1oRvdIY_dbAqhGj-TBxTaL7BK8C6cyiSwftW-f7nwsypHE96M0TO8vYad-7XyPSQ9TewCocJXvtNPTxdh4mb3e3r9cP6fPL_eP11XOKnImYMlAgEXNeIqsyLhQvslajLBtZtQKg5LTlKGSGBVaVaoqcMWhyyHNaTQvJD5Oz2Xfw7n3UIdZLN3o7vayzvBTV1CWfqPOZQu9C8LqtB2968Oua0fonhfqGvl5tUnia4NMZ9gH_uP-U-De3eIiO</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Wang, Yanzhao</creator><creator>Chen, Zhanhua</creator><creator>Huang, Hongfeng</creator><creator>Wang, Dagang</creator><creator>Liu, Danqing</creator><creator>Wang, Lei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid><orcidid>https://orcid.org/0000-0002-1075-9868</orcidid></search><sort><creationdate>20201214</creationdate><title>Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials</title><author>Wang, Yanzhao ; Chen, Zhanhua ; Huang, Hongfeng ; Wang, Dagang ; Liu, Danqing ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-1ada9cc436c17238d352fec96b97f8aa630f3c892c5c77db5411ab4a4407f3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transport</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Diimide</topic><topic>Electrical conductivity</topic><topic>Electrical junctions</topic><topic>Electrical resistivity</topic><topic>Film thickness</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Naphthalene</topic><topic>Organic chemistry</topic><topic>P-n junctions</topic><topic>Radicals</topic><topic>Single wall carbon nanotubes</topic><topic>Stability analysis</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thermal stability</topic><topic>Thermoelectric materials</topic><topic>Thickness measurement</topic><topic>Toxicity</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanzhao</creatorcontrib><creatorcontrib>Chen, Zhanhua</creatorcontrib><creatorcontrib>Huang, Hongfeng</creatorcontrib><creatorcontrib>Wang, Dagang</creatorcontrib><creatorcontrib>Liu, Danqing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanzhao</au><au>Chen, Zhanhua</au><au>Huang, Hongfeng</au><au>Wang, Dagang</au><au>Liu, Danqing</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-12-14</date><risdate>2020</risdate><volume>8</volume><issue>46</issue><spage>24675</spage><epage>24684</epage><pages>24675-24684</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high power factors. Herein, naphthalene diimide derivatives (NDI-1 and NDI-2) carrying a radical substituent of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) are designed and complexed with single-walled carbon nanotubes (SWCNTs) as both p-type and n-type thermoelectric composites. The introduction of the radical substituent remarkably improved the electrical conductivity by almost fifty percent compared to that of the NDI derivative without the radical substituent (NDI-0). The obtained radical-containing composites display greatly enhanced TE performance with highest power factors of 277.1 ± 5.4 μW m
−1
K
−2
for the p-type composite and 79.6 ± 1.7 μW m
−1
K
−2
for the n-type composite, respectively. Furthermore, the thermoelectric module based on NDI-1/SWCNT composite films consisting of five p-n junctions reaches a large output power of 2.81 μW under a 65 K temperature gradient. The enhanced electrical conductivities and TE performances of radical-containing NDI/SWCNT composite films are attributable to the improved doping level and charge transport process between the radical molecules and SWCNTs. This design strategy of introducing radical moieties into organic thermoelectric materials might be beneficial to the future application for high-performance p-type and n-type thermoelectric materials and devices.
Organic radical compound and SWCNT composites for high-performance p-type and n-type thermoelectric materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta08154j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid><orcidid>https://orcid.org/0000-0002-1075-9868</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-12, Vol.8 (46), p.24675-24684 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0TA08154J |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Charge transport Composite materials Conductivity Diimide Electrical conductivity Electrical junctions Electrical resistivity Film thickness Nanotechnology Nanotubes Naphthalene Organic chemistry P-n junctions Radicals Single wall carbon nanotubes Stability analysis Temperature gradients Thermal conductivity Thermal stability Thermoelectric materials Thickness measurement Toxicity Transport processes |
title | Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20radical%20compound%20and%20carbon%20nanotube%20composites%20with%20enhanced%20electrical%20conductivity%20towards%20high-performance%20p-type%20and%20n-type%20thermoelectric%20materials&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Yanzhao&rft.date=2020-12-14&rft.volume=8&rft.issue=46&rft.spage=24675&rft.epage=24684&rft.pages=24675-24684&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta08154j&rft_dat=%3Cproquest_cross%3E2468746863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468746863&rft_id=info:pmid/&rfr_iscdi=true |