Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials

Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high pow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-12, Vol.8 (46), p.24675-24684
Hauptverfasser: Wang, Yanzhao, Chen, Zhanhua, Huang, Hongfeng, Wang, Dagang, Liu, Danqing, Wang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24684
container_issue 46
container_start_page 24675
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Wang, Yanzhao
Chen, Zhanhua
Huang, Hongfeng
Wang, Dagang
Liu, Danqing
Wang, Lei
description Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high power factors. Herein, naphthalene diimide derivatives (NDI-1 and NDI-2) carrying a radical substituent of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) are designed and complexed with single-walled carbon nanotubes (SWCNTs) as both p-type and n-type thermoelectric composites. The introduction of the radical substituent remarkably improved the electrical conductivity by almost fifty percent compared to that of the NDI derivative without the radical substituent (NDI-0). The obtained radical-containing composites display greatly enhanced TE performance with highest power factors of 277.1 ± 5.4 μW m −1 K −2 for the p-type composite and 79.6 ± 1.7 μW m −1 K −2 for the n-type composite, respectively. Furthermore, the thermoelectric module based on NDI-1/SWCNT composite films consisting of five p-n junctions reaches a large output power of 2.81 μW under a 65 K temperature gradient. The enhanced electrical conductivities and TE performances of radical-containing NDI/SWCNT composite films are attributable to the improved doping level and charge transport process between the radical molecules and SWCNTs. This design strategy of introducing radical moieties into organic thermoelectric materials might be beneficial to the future application for high-performance p-type and n-type thermoelectric materials and devices. Organic radical compound and SWCNT composites for high-performance p-type and n-type thermoelectric materials.
doi_str_mv 10.1039/d0ta08154j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA08154J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468746863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-1ada9cc436c17238d352fec96b97f8aa630f3c892c5c77db5411ab4a4407f3c93</originalsourceid><addsrcrecordid>eNpFkU1LxDAQhosoKOrFuxDwJlSTph_JUfwWwYuey3SSbrNsk5qkyv4c_6l1u-rAMC_MM-8c3iQ5YfSCUS4vFY1ABSvy5U5ykNGCplUuy90_LcR-chzCkk4lKC2lPEi-XvwCrEHiQRmEFUHXD260isDUCL5xlliwLo6NnpfBRB3Ip4kd0bYDi1oRvdIY_dbAqhGj-TBxTaL7BK8C6cyiSwftW-f7nwsypHE96M0TO8vYad-7XyPSQ9TewCocJXvtNPTxdh4mb3e3r9cP6fPL_eP11XOKnImYMlAgEXNeIqsyLhQvslajLBtZtQKg5LTlKGSGBVaVaoqcMWhyyHNaTQvJD5Oz2Xfw7n3UIdZLN3o7vayzvBTV1CWfqPOZQu9C8LqtB2968Oua0fonhfqGvl5tUnia4NMZ9gH_uP-U-De3eIiO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468746863</pqid></control><display><type>article</type><title>Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Yanzhao ; Chen, Zhanhua ; Huang, Hongfeng ; Wang, Dagang ; Liu, Danqing ; Wang, Lei</creator><creatorcontrib>Wang, Yanzhao ; Chen, Zhanhua ; Huang, Hongfeng ; Wang, Dagang ; Liu, Danqing ; Wang, Lei</creatorcontrib><description>Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high power factors. Herein, naphthalene diimide derivatives (NDI-1 and NDI-2) carrying a radical substituent of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) are designed and complexed with single-walled carbon nanotubes (SWCNTs) as both p-type and n-type thermoelectric composites. The introduction of the radical substituent remarkably improved the electrical conductivity by almost fifty percent compared to that of the NDI derivative without the radical substituent (NDI-0). The obtained radical-containing composites display greatly enhanced TE performance with highest power factors of 277.1 ± 5.4 μW m −1 K −2 for the p-type composite and 79.6 ± 1.7 μW m −1 K −2 for the n-type composite, respectively. Furthermore, the thermoelectric module based on NDI-1/SWCNT composite films consisting of five p-n junctions reaches a large output power of 2.81 μW under a 65 K temperature gradient. The enhanced electrical conductivities and TE performances of radical-containing NDI/SWCNT composite films are attributable to the improved doping level and charge transport process between the radical molecules and SWCNTs. This design strategy of introducing radical moieties into organic thermoelectric materials might be beneficial to the future application for high-performance p-type and n-type thermoelectric materials and devices. Organic radical compound and SWCNT composites for high-performance p-type and n-type thermoelectric materials.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta08154j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transport ; Composite materials ; Conductivity ; Diimide ; Electrical conductivity ; Electrical junctions ; Electrical resistivity ; Film thickness ; Nanotechnology ; Nanotubes ; Naphthalene ; Organic chemistry ; P-n junctions ; Radicals ; Single wall carbon nanotubes ; Stability analysis ; Temperature gradients ; Thermal conductivity ; Thermal stability ; Thermoelectric materials ; Thickness measurement ; Toxicity ; Transport processes</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-12, Vol.8 (46), p.24675-24684</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-1ada9cc436c17238d352fec96b97f8aa630f3c892c5c77db5411ab4a4407f3c93</citedby><cites>FETCH-LOGICAL-c318t-1ada9cc436c17238d352fec96b97f8aa630f3c892c5c77db5411ab4a4407f3c93</cites><orcidid>0000-0002-2313-2095 ; 0000-0002-1075-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Wang, Yanzhao</creatorcontrib><creatorcontrib>Chen, Zhanhua</creatorcontrib><creatorcontrib>Huang, Hongfeng</creatorcontrib><creatorcontrib>Wang, Dagang</creatorcontrib><creatorcontrib>Liu, Danqing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high power factors. Herein, naphthalene diimide derivatives (NDI-1 and NDI-2) carrying a radical substituent of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) are designed and complexed with single-walled carbon nanotubes (SWCNTs) as both p-type and n-type thermoelectric composites. The introduction of the radical substituent remarkably improved the electrical conductivity by almost fifty percent compared to that of the NDI derivative without the radical substituent (NDI-0). The obtained radical-containing composites display greatly enhanced TE performance with highest power factors of 277.1 ± 5.4 μW m −1 K −2 for the p-type composite and 79.6 ± 1.7 μW m −1 K −2 for the n-type composite, respectively. Furthermore, the thermoelectric module based on NDI-1/SWCNT composite films consisting of five p-n junctions reaches a large output power of 2.81 μW under a 65 K temperature gradient. The enhanced electrical conductivities and TE performances of radical-containing NDI/SWCNT composite films are attributable to the improved doping level and charge transport process between the radical molecules and SWCNTs. This design strategy of introducing radical moieties into organic thermoelectric materials might be beneficial to the future application for high-performance p-type and n-type thermoelectric materials and devices. Organic radical compound and SWCNT composites for high-performance p-type and n-type thermoelectric materials.</description><subject>Charge transport</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Diimide</subject><subject>Electrical conductivity</subject><subject>Electrical junctions</subject><subject>Electrical resistivity</subject><subject>Film thickness</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Naphthalene</subject><subject>Organic chemistry</subject><subject>P-n junctions</subject><subject>Radicals</subject><subject>Single wall carbon nanotubes</subject><subject>Stability analysis</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thermal stability</subject><subject>Thermoelectric materials</subject><subject>Thickness measurement</subject><subject>Toxicity</subject><subject>Transport processes</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LxDAQhosoKOrFuxDwJlSTph_JUfwWwYuey3SSbrNsk5qkyv4c_6l1u-rAMC_MM-8c3iQ5YfSCUS4vFY1ABSvy5U5ykNGCplUuy90_LcR-chzCkk4lKC2lPEi-XvwCrEHiQRmEFUHXD260isDUCL5xlliwLo6NnpfBRB3Ip4kd0bYDi1oRvdIY_dbAqhGj-TBxTaL7BK8C6cyiSwftW-f7nwsypHE96M0TO8vYad-7XyPSQ9TewCocJXvtNPTxdh4mb3e3r9cP6fPL_eP11XOKnImYMlAgEXNeIqsyLhQvslajLBtZtQKg5LTlKGSGBVaVaoqcMWhyyHNaTQvJD5Oz2Xfw7n3UIdZLN3o7vayzvBTV1CWfqPOZQu9C8LqtB2968Oua0fonhfqGvl5tUnia4NMZ9gH_uP-U-De3eIiO</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Wang, Yanzhao</creator><creator>Chen, Zhanhua</creator><creator>Huang, Hongfeng</creator><creator>Wang, Dagang</creator><creator>Liu, Danqing</creator><creator>Wang, Lei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid><orcidid>https://orcid.org/0000-0002-1075-9868</orcidid></search><sort><creationdate>20201214</creationdate><title>Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials</title><author>Wang, Yanzhao ; Chen, Zhanhua ; Huang, Hongfeng ; Wang, Dagang ; Liu, Danqing ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-1ada9cc436c17238d352fec96b97f8aa630f3c892c5c77db5411ab4a4407f3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge transport</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Diimide</topic><topic>Electrical conductivity</topic><topic>Electrical junctions</topic><topic>Electrical resistivity</topic><topic>Film thickness</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Naphthalene</topic><topic>Organic chemistry</topic><topic>P-n junctions</topic><topic>Radicals</topic><topic>Single wall carbon nanotubes</topic><topic>Stability analysis</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thermal stability</topic><topic>Thermoelectric materials</topic><topic>Thickness measurement</topic><topic>Toxicity</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanzhao</creatorcontrib><creatorcontrib>Chen, Zhanhua</creatorcontrib><creatorcontrib>Huang, Hongfeng</creatorcontrib><creatorcontrib>Wang, Dagang</creatorcontrib><creatorcontrib>Liu, Danqing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanzhao</au><au>Chen, Zhanhua</au><au>Huang, Hongfeng</au><au>Wang, Dagang</au><au>Liu, Danqing</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-12-14</date><risdate>2020</risdate><volume>8</volume><issue>46</issue><spage>24675</spage><epage>24684</epage><pages>24675-24684</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Small organic molecules are promising as the next generation of thermoelectric materials due to their unique advantages, such as low cost, high mechanical flexibility, low thermal conductivity, and low toxicity. However, their low electrical conductivities seriously limit the realization of high power factors. Herein, naphthalene diimide derivatives (NDI-1 and NDI-2) carrying a radical substituent of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) are designed and complexed with single-walled carbon nanotubes (SWCNTs) as both p-type and n-type thermoelectric composites. The introduction of the radical substituent remarkably improved the electrical conductivity by almost fifty percent compared to that of the NDI derivative without the radical substituent (NDI-0). The obtained radical-containing composites display greatly enhanced TE performance with highest power factors of 277.1 ± 5.4 μW m −1 K −2 for the p-type composite and 79.6 ± 1.7 μW m −1 K −2 for the n-type composite, respectively. Furthermore, the thermoelectric module based on NDI-1/SWCNT composite films consisting of five p-n junctions reaches a large output power of 2.81 μW under a 65 K temperature gradient. The enhanced electrical conductivities and TE performances of radical-containing NDI/SWCNT composite films are attributable to the improved doping level and charge transport process between the radical molecules and SWCNTs. This design strategy of introducing radical moieties into organic thermoelectric materials might be beneficial to the future application for high-performance p-type and n-type thermoelectric materials and devices. Organic radical compound and SWCNT composites for high-performance p-type and n-type thermoelectric materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta08154j</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid><orcidid>https://orcid.org/0000-0002-1075-9868</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-12, Vol.8 (46), p.24675-24684
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D0TA08154J
source Royal Society Of Chemistry Journals 2008-
subjects Charge transport
Composite materials
Conductivity
Diimide
Electrical conductivity
Electrical junctions
Electrical resistivity
Film thickness
Nanotechnology
Nanotubes
Naphthalene
Organic chemistry
P-n junctions
Radicals
Single wall carbon nanotubes
Stability analysis
Temperature gradients
Thermal conductivity
Thermal stability
Thermoelectric materials
Thickness measurement
Toxicity
Transport processes
title Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20radical%20compound%20and%20carbon%20nanotube%20composites%20with%20enhanced%20electrical%20conductivity%20towards%20high-performance%20p-type%20and%20n-type%20thermoelectric%20materials&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Yanzhao&rft.date=2020-12-14&rft.volume=8&rft.issue=46&rft.spage=24675&rft.epage=24684&rft.pages=24675-24684&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta08154j&rft_dat=%3Cproquest_cross%3E2468746863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468746863&rft_id=info:pmid/&rfr_iscdi=true