DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm

Cancer is one of the most dangerous diseases to human health. The accurate prediction of anticancer peptides (ACPs) would be valuable for the development and design of novel anticancer agents. Current deep neural network models have obtained state-of-the-art prediction accuracy for the ACP classific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy. Nucleic acids 2020-12, Vol.22, p.862-870
Hauptverfasser: Yu, Lezheng, Jing, Runyu, Liu, Fengjuan, Luo, Jiesi, Li, Yizhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 870
container_issue
container_start_page 862
container_title Molecular therapy. Nucleic acids
container_volume 22
creator Yu, Lezheng
Jing, Runyu
Liu, Fengjuan
Luo, Jiesi
Li, Yizhou
description Cancer is one of the most dangerous diseases to human health. The accurate prediction of anticancer peptides (ACPs) would be valuable for the development and design of novel anticancer agents. Current deep neural network models have obtained state-of-the-art prediction accuracy for the ACP classification task. However, based on existing studies, it remains unclear which deep learning architecture achieves the best performance. Thus, in this study, we first present a systematic exploration of three important deep learning architectures: convolutional, recurrent, and convolutional-recurrent networks for distinguishing ACPs from non-ACPs. We find that the recurrent neural network with bidirectional long short-term memory cells is superior to other architectures. By utilizing the proposed model, we implement a sequence-based deep learning tool (DeepACP) to accurately predict the likelihood of a peptide exhibiting anticancer activity. The results indicate that DeepACP outperforms several existing methods and can be used as an effective tool for the prediction of anticancer peptides. Furthermore, we visualize and understand the deep learning model. We hope that our strategy can be extended to identify other types of peptides and may provide more assistance to the development of proteomics and new drugs. [Display omitted] Yu and colleagues exploited the deep learning technique to accurately identify anticancer peptides. A comprehensive look at peptide efficiencies and outcomes across primary sequences and model architectures yields a deep learning tool for users to predict the anticancer efficiency for a sequence of interest.
doi_str_mv 10.1016/j.omtn.2020.10.005
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000596741900009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2162253120303176</els_id><doaj_id>oai_doaj_org_article_838017e6dade4e359863bb7c5c1e85e1</doaj_id><sourcerecordid>2464143217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-26d6444cfc8b21fed016ce19994168922234d54a5bb371e5eb4870fa818f75723</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCIVqV_gJOPSGgXf8dBCCkKXytV0AOcLceZ7HqVxMFxtuq_x2lWFb0gfLFn_N7zeN5k2WuCtwQT-e649X0cthTTJbHFWDzLLimRdEMFI8__Ol9k19N0xGlJTKikL7MLxijDXJHLbP4EMJbV7XtUou_-BB2qfD_O0UTnB9OhchyDN_aAWh9Qae0cTAS0a2CIrnX2AYZ8i8oUWzNYCOgWxugamFB9jxZ1dAMmDG7Yo7Lb--DioX-VvWhNN8H1eb_Kfn35_LP6trn58XVXlTcbywsVN1Q2knNuW6tqSlpo0sctkKIoOJGqoJQy3ghuRF2znICAmqsct0YR1eYip-wq2626jTdHPQbXm3CvvXH6IeHDXpuQCu9AK6YwyUE2pgEOTBRKsrrOrbAElACStD6uWuNc99DY1IFguieiT28Gd9B7f9K5FErki8Cbs0Dwv2eYou7dZKHrzAB-njTlkhPOKMkTlK5QG_w0BWgfnyFYL_brVHyyXy_2L7lkfyK9XUl3UPt2sg6SHY_EZL8oZM5JsUxCkdDq_9GVWwei8vMQE_XDSoVk3clB0Gd64wLYmHrr_lXnHxvc2DA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464143217</pqid></control><display><type>article</type><title>DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Yu, Lezheng ; Jing, Runyu ; Liu, Fengjuan ; Luo, Jiesi ; Li, Yizhou</creator><creatorcontrib>Yu, Lezheng ; Jing, Runyu ; Liu, Fengjuan ; Luo, Jiesi ; Li, Yizhou</creatorcontrib><description>Cancer is one of the most dangerous diseases to human health. The accurate prediction of anticancer peptides (ACPs) would be valuable for the development and design of novel anticancer agents. Current deep neural network models have obtained state-of-the-art prediction accuracy for the ACP classification task. However, based on existing studies, it remains unclear which deep learning architecture achieves the best performance. Thus, in this study, we first present a systematic exploration of three important deep learning architectures: convolutional, recurrent, and convolutional-recurrent networks for distinguishing ACPs from non-ACPs. We find that the recurrent neural network with bidirectional long short-term memory cells is superior to other architectures. By utilizing the proposed model, we implement a sequence-based deep learning tool (DeepACP) to accurately predict the likelihood of a peptide exhibiting anticancer activity. The results indicate that DeepACP outperforms several existing methods and can be used as an effective tool for the prediction of anticancer peptides. Furthermore, we visualize and understand the deep learning model. We hope that our strategy can be extended to identify other types of peptides and may provide more assistance to the development of proteomics and new drugs. [Display omitted] Yu and colleagues exploited the deep learning technique to accurately identify anticancer peptides. A comprehensive look at peptide efficiencies and outcomes across primary sequences and model architectures yields a deep learning tool for users to predict the anticancer efficiency for a sequence of interest.</description><identifier>ISSN: 2162-2531</identifier><identifier>EISSN: 2162-2531</identifier><identifier>DOI: 10.1016/j.omtn.2020.10.005</identifier><identifier>PMID: 33230481</identifier><language>eng</language><publisher>CAMBRIDGE: Elsevier Inc</publisher><subject>anticancer peptides ; bidirectional long short-term memory cells ; convolutional neural networks ; deep learning ; Life Sciences &amp; Biomedicine ; Medicine, Research &amp; Experimental ; Original ; recurrent neural networks ; Research &amp; Experimental Medicine ; Science &amp; Technology</subject><ispartof>Molecular therapy. Nucleic acids, 2020-12, Vol.22, p.862-870</ispartof><rights>2020 The Author(s)</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>55</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000596741900009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c498t-26d6444cfc8b21fed016ce19994168922234d54a5bb371e5eb4870fa818f75723</citedby><cites>FETCH-LOGICAL-c498t-26d6444cfc8b21fed016ce19994168922234d54a5bb371e5eb4870fa818f75723</cites><orcidid>0000-0002-1199-7024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids></links><search><creatorcontrib>Yu, Lezheng</creatorcontrib><creatorcontrib>Jing, Runyu</creatorcontrib><creatorcontrib>Liu, Fengjuan</creatorcontrib><creatorcontrib>Luo, Jiesi</creatorcontrib><creatorcontrib>Li, Yizhou</creatorcontrib><title>DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm</title><title>Molecular therapy. Nucleic acids</title><addtitle>MOL THER-NUCL ACIDS</addtitle><description>Cancer is one of the most dangerous diseases to human health. The accurate prediction of anticancer peptides (ACPs) would be valuable for the development and design of novel anticancer agents. Current deep neural network models have obtained state-of-the-art prediction accuracy for the ACP classification task. However, based on existing studies, it remains unclear which deep learning architecture achieves the best performance. Thus, in this study, we first present a systematic exploration of three important deep learning architectures: convolutional, recurrent, and convolutional-recurrent networks for distinguishing ACPs from non-ACPs. We find that the recurrent neural network with bidirectional long short-term memory cells is superior to other architectures. By utilizing the proposed model, we implement a sequence-based deep learning tool (DeepACP) to accurately predict the likelihood of a peptide exhibiting anticancer activity. The results indicate that DeepACP outperforms several existing methods and can be used as an effective tool for the prediction of anticancer peptides. Furthermore, we visualize and understand the deep learning model. We hope that our strategy can be extended to identify other types of peptides and may provide more assistance to the development of proteomics and new drugs. [Display omitted] Yu and colleagues exploited the deep learning technique to accurately identify anticancer peptides. A comprehensive look at peptide efficiencies and outcomes across primary sequences and model architectures yields a deep learning tool for users to predict the anticancer efficiency for a sequence of interest.</description><subject>anticancer peptides</subject><subject>bidirectional long short-term memory cells</subject><subject>convolutional neural networks</subject><subject>deep learning</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Medicine, Research &amp; Experimental</subject><subject>Original</subject><subject>recurrent neural networks</subject><subject>Research &amp; Experimental Medicine</subject><subject>Science &amp; Technology</subject><issn>2162-2531</issn><issn>2162-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUk1v1DAQjRCIVqV_gJOPSGgXf8dBCCkKXytV0AOcLceZ7HqVxMFxtuq_x2lWFb0gfLFn_N7zeN5k2WuCtwQT-e649X0cthTTJbHFWDzLLimRdEMFI8__Ol9k19N0xGlJTKikL7MLxijDXJHLbP4EMJbV7XtUou_-BB2qfD_O0UTnB9OhchyDN_aAWh9Qae0cTAS0a2CIrnX2AYZ8i8oUWzNYCOgWxugamFB9jxZ1dAMmDG7Yo7Lb--DioX-VvWhNN8H1eb_Kfn35_LP6trn58XVXlTcbywsVN1Q2knNuW6tqSlpo0sctkKIoOJGqoJQy3ghuRF2znICAmqsct0YR1eYip-wq2626jTdHPQbXm3CvvXH6IeHDXpuQCu9AK6YwyUE2pgEOTBRKsrrOrbAElACStD6uWuNc99DY1IFguieiT28Gd9B7f9K5FErki8Cbs0Dwv2eYou7dZKHrzAB-njTlkhPOKMkTlK5QG_w0BWgfnyFYL_brVHyyXy_2L7lkfyK9XUl3UPt2sg6SHY_EZL8oZM5JsUxCkdDq_9GVWwei8vMQE_XDSoVk3clB0Gd64wLYmHrr_lXnHxvc2DA</recordid><startdate>20201204</startdate><enddate>20201204</enddate><creator>Yu, Lezheng</creator><creator>Jing, Runyu</creator><creator>Liu, Fengjuan</creator><creator>Luo, Jiesi</creator><creator>Li, Yizhou</creator><general>Elsevier Inc</general><general>Elsevier</general><general>American Society of Gene &amp; Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1199-7024</orcidid></search><sort><creationdate>20201204</creationdate><title>DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm</title><author>Yu, Lezheng ; Jing, Runyu ; Liu, Fengjuan ; Luo, Jiesi ; Li, Yizhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-26d6444cfc8b21fed016ce19994168922234d54a5bb371e5eb4870fa818f75723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>anticancer peptides</topic><topic>bidirectional long short-term memory cells</topic><topic>convolutional neural networks</topic><topic>deep learning</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Medicine, Research &amp; Experimental</topic><topic>Original</topic><topic>recurrent neural networks</topic><topic>Research &amp; Experimental Medicine</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lezheng</creatorcontrib><creatorcontrib>Jing, Runyu</creatorcontrib><creatorcontrib>Liu, Fengjuan</creatorcontrib><creatorcontrib>Luo, Jiesi</creatorcontrib><creatorcontrib>Li, Yizhou</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular therapy. Nucleic acids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lezheng</au><au>Jing, Runyu</au><au>Liu, Fengjuan</au><au>Luo, Jiesi</au><au>Li, Yizhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm</atitle><jtitle>Molecular therapy. Nucleic acids</jtitle><stitle>MOL THER-NUCL ACIDS</stitle><date>2020-12-04</date><risdate>2020</risdate><volume>22</volume><spage>862</spage><epage>870</epage><pages>862-870</pages><issn>2162-2531</issn><eissn>2162-2531</eissn><abstract>Cancer is one of the most dangerous diseases to human health. The accurate prediction of anticancer peptides (ACPs) would be valuable for the development and design of novel anticancer agents. Current deep neural network models have obtained state-of-the-art prediction accuracy for the ACP classification task. However, based on existing studies, it remains unclear which deep learning architecture achieves the best performance. Thus, in this study, we first present a systematic exploration of three important deep learning architectures: convolutional, recurrent, and convolutional-recurrent networks for distinguishing ACPs from non-ACPs. We find that the recurrent neural network with bidirectional long short-term memory cells is superior to other architectures. By utilizing the proposed model, we implement a sequence-based deep learning tool (DeepACP) to accurately predict the likelihood of a peptide exhibiting anticancer activity. The results indicate that DeepACP outperforms several existing methods and can be used as an effective tool for the prediction of anticancer peptides. Furthermore, we visualize and understand the deep learning model. We hope that our strategy can be extended to identify other types of peptides and may provide more assistance to the development of proteomics and new drugs. [Display omitted] Yu and colleagues exploited the deep learning technique to accurately identify anticancer peptides. A comprehensive look at peptide efficiencies and outcomes across primary sequences and model architectures yields a deep learning tool for users to predict the anticancer efficiency for a sequence of interest.</abstract><cop>CAMBRIDGE</cop><pub>Elsevier Inc</pub><pmid>33230481</pmid><doi>10.1016/j.omtn.2020.10.005</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1199-7024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-2531
ispartof Molecular therapy. Nucleic acids, 2020-12, Vol.22, p.862-870
issn 2162-2531
2162-2531
language eng
recordid cdi_webofscience_primary_000596741900009
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects anticancer peptides
bidirectional long short-term memory cells
convolutional neural networks
deep learning
Life Sciences & Biomedicine
Medicine, Research & Experimental
Original
recurrent neural networks
Research & Experimental Medicine
Science & Technology
title DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepACP:%20A%20Novel%20Computational%20Approach%20for%20Accurate%20Identification%20of%20Anticancer%20Peptides%20by%20Deep%20Learning%20Algorithm&rft.jtitle=Molecular%20therapy.%20Nucleic%20acids&rft.au=Yu,%20Lezheng&rft.date=2020-12-04&rft.volume=22&rft.spage=862&rft.epage=870&rft.pages=862-870&rft.issn=2162-2531&rft.eissn=2162-2531&rft_id=info:doi/10.1016/j.omtn.2020.10.005&rft_dat=%3Cproquest_webof%3E2464143217%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464143217&rft_id=info:pmid/33230481&rft_els_id=S2162253120303176&rft_doaj_id=oai_doaj_org_article_838017e6dade4e359863bb7c5c1e85e1&rfr_iscdi=true