Profiling Readmissions Using Hidden Markov Model - the Case of Congestive Heart Failure

Reducing costly hospital readmissions of patients with Congestive Heart Failure (CHF) is important. We analyzed 4,661 CHF patients (from 2007 to 2017) using Hidden Markov Models in order to profile CHF readmission risk over time. This method proved practical in identifying three patient groups with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems management 2021-07, Vol.38 (3), p.237-249
Hauptverfasser: Ben-Assuli, Ofir, Heart, Tsipi, Vest, Joshua R., Ramon-Gonen, Roni, Shlomo, Nir, Klempfner, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reducing costly hospital readmissions of patients with Congestive Heart Failure (CHF) is important. We analyzed 4,661 CHF patients (from 2007 to 2017) using Hidden Markov Models in order to profile CHF readmission risk over time. This method proved practical in identifying three patient groups with distinctive characteristics, which might guide physicians in tailoring personalized care to prevent hospital readmission. We thus demonstrate how applying appropriate AI analytics can save costs and improve the quality of care.
ISSN:1058-0530
1934-8703
DOI:10.1080/10580530.2020.1847362