Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs

Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-12, Vol.125 (24), p.240501, Article 240501
Hauptverfasser: Wu, Tong, Izaac, J. A., Li, Zi-Xi, Wang, Kai, Chen, Zhao-Zhong, Zhu, Shining, Wang, J. B., Ma, Xiao-Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 240501
container_title Physical review letters
container_volume 125
creator Wu, Tong
Izaac, J. A.
Li, Zi-Xi
Wang, Kai
Chen, Zhao-Zhong
Zhu, Shining
Wang, J. B.
Ma, Xiao-Song
description Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.
doi_str_mv 10.1103/PhysRevLett.125.240501
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000596461100003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471032682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3b51cb2618329992817d12615b89ade1a0d1aeb8593a82369f8f47ea4f3068d33</originalsourceid><addsrcrecordid>eNqNkE1P3DAQhq0KVBbav4AscUTZztj5sI8opVBppcKyVaVeIieZlMDGWWynsP8eVwuoR-ZijfS8M56HsWOEOSLIL1e3W7-kvwsKYY4im4sUMsAPbIZQ6KRATPfYDEBiogGKA3bo_R0AoMjVR3YgZYoC8mLGfp8_bcj1A9lg1vzKuD5sk1Xs-c12GCi4vuHXk7FhGvgvs773vBsdLyPuzDqyfGnsfW__8NHyr72jJlDLL5zZ3PpPbL8za0-fX94j9vPb-aq8TBY_Lr6XZ4ukSaEIiawzbGqRo5JCay0UFm38Jma10qYlNNCioVplWholZK471aUFmbSTkKtWyiN2spu7cePDRD5Ud-PkbFxZibSIsuLNIlL5jmrc6L2jrtrEs43bVgjVP6XVf0qrqLTaKY3B45fxUz1Q-xZ7dRgBtQMeqR473_RkG3rDovRM52keV8SSZR9M6EdbjpMNMXr6_qh8Bh5WlUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471032682</pqid></control><display><type>article</type><title>Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Wu, Tong ; Izaac, J. A. ; Li, Zi-Xi ; Wang, Kai ; Chen, Zhao-Zhong ; Zhu, Shining ; Wang, J. B. ; Ma, Xiao-Song</creator><creatorcontrib>Wu, Tong ; Izaac, J. A. ; Li, Zi-Xi ; Wang, Kai ; Chen, Zhao-Zhong ; Zhu, Shining ; Wang, J. B. ; Ma, Xiao-Song</creatorcontrib><description>Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.240501</identifier><identifier>PMID: 33412067</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Algorithms ; Graph theory ; Graphical representations ; Graphs ; Parity ; Photons ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Ranking ; Science &amp; Technology</subject><ispartof>Physical review letters, 2020-12, Vol.125 (24), p.240501, Article 240501</ispartof><rights>Copyright American Physical Society Dec 11, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000596461100003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c407t-3b51cb2618329992817d12615b89ade1a0d1aeb8593a82369f8f47ea4f3068d33</citedby><cites>FETCH-LOGICAL-c407t-3b51cb2618329992817d12615b89ade1a0d1aeb8593a82369f8f47ea4f3068d33</cites><orcidid>0000-0003-2640-0734 ; 0000-0001-7005-8855 ; 0000-0001-7544-0084 ; 0000-0002-8965-4953 ; 0000-0002-6318-6012 ; 0000-0002-0500-5690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2878,2879,27931,27932,28255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33412067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Izaac, J. A.</creatorcontrib><creatorcontrib>Li, Zi-Xi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Chen, Zhao-Zhong</creatorcontrib><creatorcontrib>Zhu, Shining</creatorcontrib><creatorcontrib>Wang, J. B.</creatorcontrib><creatorcontrib>Ma, Xiao-Song</creatorcontrib><title>Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs</title><title>Physical review letters</title><addtitle>PHYS REV LETT</addtitle><addtitle>Phys Rev Lett</addtitle><description>Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.</description><subject>Algorithms</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Parity</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Ranking</subject><subject>Science &amp; Technology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1P3DAQhq0KVBbav4AscUTZztj5sI8opVBppcKyVaVeIieZlMDGWWynsP8eVwuoR-ZijfS8M56HsWOEOSLIL1e3W7-kvwsKYY4im4sUMsAPbIZQ6KRATPfYDEBiogGKA3bo_R0AoMjVR3YgZYoC8mLGfp8_bcj1A9lg1vzKuD5sk1Xs-c12GCi4vuHXk7FhGvgvs773vBsdLyPuzDqyfGnsfW__8NHyr72jJlDLL5zZ3PpPbL8za0-fX94j9vPb-aq8TBY_Lr6XZ4ukSaEIiawzbGqRo5JCay0UFm38Jma10qYlNNCioVplWholZK471aUFmbSTkKtWyiN2spu7cePDRD5Ud-PkbFxZibSIsuLNIlL5jmrc6L2jrtrEs43bVgjVP6XVf0qrqLTaKY3B45fxUz1Q-xZ7dRgBtQMeqR473_RkG3rDovRM52keV8SSZR9M6EdbjpMNMXr6_qh8Bh5WlUo</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Wu, Tong</creator><creator>Izaac, J. A.</creator><creator>Li, Zi-Xi</creator><creator>Wang, Kai</creator><creator>Chen, Zhao-Zhong</creator><creator>Zhu, Shining</creator><creator>Wang, J. B.</creator><creator>Ma, Xiao-Song</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2640-0734</orcidid><orcidid>https://orcid.org/0000-0001-7005-8855</orcidid><orcidid>https://orcid.org/0000-0001-7544-0084</orcidid><orcidid>https://orcid.org/0000-0002-8965-4953</orcidid><orcidid>https://orcid.org/0000-0002-6318-6012</orcidid><orcidid>https://orcid.org/0000-0002-0500-5690</orcidid></search><sort><creationdate>20201211</creationdate><title>Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs</title><author>Wu, Tong ; Izaac, J. A. ; Li, Zi-Xi ; Wang, Kai ; Chen, Zhao-Zhong ; Zhu, Shining ; Wang, J. B. ; Ma, Xiao-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3b51cb2618329992817d12615b89ade1a0d1aeb8593a82369f8f47ea4f3068d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Parity</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Ranking</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Izaac, J. A.</creatorcontrib><creatorcontrib>Li, Zi-Xi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Chen, Zhao-Zhong</creatorcontrib><creatorcontrib>Zhu, Shining</creatorcontrib><creatorcontrib>Wang, J. B.</creatorcontrib><creatorcontrib>Ma, Xiao-Song</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tong</au><au>Izaac, J. A.</au><au>Li, Zi-Xi</au><au>Wang, Kai</au><au>Chen, Zhao-Zhong</au><au>Zhu, Shining</au><au>Wang, J. B.</au><au>Ma, Xiao-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs</atitle><jtitle>Physical review letters</jtitle><stitle>PHYS REV LETT</stitle><addtitle>Phys Rev Lett</addtitle><date>2020-12-11</date><risdate>2020</risdate><volume>125</volume><issue>24</issue><spage>240501</spage><pages>240501-</pages><artnum>240501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><pmid>33412067</pmid><doi>10.1103/PhysRevLett.125.240501</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2640-0734</orcidid><orcidid>https://orcid.org/0000-0001-7005-8855</orcidid><orcidid>https://orcid.org/0000-0001-7544-0084</orcidid><orcidid>https://orcid.org/0000-0002-8965-4953</orcidid><orcidid>https://orcid.org/0000-0002-6318-6012</orcidid><orcidid>https://orcid.org/0000-0002-0500-5690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-12, Vol.125 (24), p.240501, Article 240501
issn 0031-9007
1079-7114
language eng
recordid cdi_webofscience_primary_000596461100003
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Algorithms
Graph theory
Graphical representations
Graphs
Parity
Photons
Physical Sciences
Physics
Physics, Multidisciplinary
Ranking
Science & Technology
title Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Parity-Time%20Symmetric%20Quantum%20Walks%20for%20Centrality%20Ranking%20on%20Directed%20Graphs&rft.jtitle=Physical%20review%20letters&rft.au=Wu,%20Tong&rft.date=2020-12-11&rft.volume=125&rft.issue=24&rft.spage=240501&rft.pages=240501-&rft.artnum=240501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.240501&rft_dat=%3Cproquest_webof%3E2471032682%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471032682&rft_id=info:pmid/33412067&rfr_iscdi=true