Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs
Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-12, Vol.125 (24), p.240501, Article 240501 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 240501 |
container_title | Physical review letters |
container_volume | 125 |
creator | Wu, Tong Izaac, J. A. Li, Zi-Xi Wang, Kai Chen, Zhao-Zhong Zhu, Shining Wang, J. B. Ma, Xiao-Song |
description | Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms. |
doi_str_mv | 10.1103/PhysRevLett.125.240501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000596461100003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471032682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3b51cb2618329992817d12615b89ade1a0d1aeb8593a82369f8f47ea4f3068d33</originalsourceid><addsrcrecordid>eNqNkE1P3DAQhq0KVBbav4AscUTZztj5sI8opVBppcKyVaVeIieZlMDGWWynsP8eVwuoR-ZijfS8M56HsWOEOSLIL1e3W7-kvwsKYY4im4sUMsAPbIZQ6KRATPfYDEBiogGKA3bo_R0AoMjVR3YgZYoC8mLGfp8_bcj1A9lg1vzKuD5sk1Xs-c12GCi4vuHXk7FhGvgvs773vBsdLyPuzDqyfGnsfW__8NHyr72jJlDLL5zZ3PpPbL8za0-fX94j9vPb-aq8TBY_Lr6XZ4ukSaEIiawzbGqRo5JCay0UFm38Jma10qYlNNCioVplWholZK471aUFmbSTkKtWyiN2spu7cePDRD5Ud-PkbFxZibSIsuLNIlL5jmrc6L2jrtrEs43bVgjVP6XVf0qrqLTaKY3B45fxUz1Q-xZ7dRgBtQMeqR473_RkG3rDovRM52keV8SSZR9M6EdbjpMNMXr6_qh8Bh5WlUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471032682</pqid></control><display><type>article</type><title>Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Wu, Tong ; Izaac, J. A. ; Li, Zi-Xi ; Wang, Kai ; Chen, Zhao-Zhong ; Zhu, Shining ; Wang, J. B. ; Ma, Xiao-Song</creator><creatorcontrib>Wu, Tong ; Izaac, J. A. ; Li, Zi-Xi ; Wang, Kai ; Chen, Zhao-Zhong ; Zhu, Shining ; Wang, J. B. ; Ma, Xiao-Song</creatorcontrib><description>Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.240501</identifier><identifier>PMID: 33412067</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Algorithms ; Graph theory ; Graphical representations ; Graphs ; Parity ; Photons ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Ranking ; Science & Technology</subject><ispartof>Physical review letters, 2020-12, Vol.125 (24), p.240501, Article 240501</ispartof><rights>Copyright American Physical Society Dec 11, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000596461100003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c407t-3b51cb2618329992817d12615b89ade1a0d1aeb8593a82369f8f47ea4f3068d33</citedby><cites>FETCH-LOGICAL-c407t-3b51cb2618329992817d12615b89ade1a0d1aeb8593a82369f8f47ea4f3068d33</cites><orcidid>0000-0003-2640-0734 ; 0000-0001-7005-8855 ; 0000-0001-7544-0084 ; 0000-0002-8965-4953 ; 0000-0002-6318-6012 ; 0000-0002-0500-5690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2878,2879,27931,27932,28255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33412067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Izaac, J. A.</creatorcontrib><creatorcontrib>Li, Zi-Xi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Chen, Zhao-Zhong</creatorcontrib><creatorcontrib>Zhu, Shining</creatorcontrib><creatorcontrib>Wang, J. B.</creatorcontrib><creatorcontrib>Ma, Xiao-Song</creatorcontrib><title>Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs</title><title>Physical review letters</title><addtitle>PHYS REV LETT</addtitle><addtitle>Phys Rev Lett</addtitle><description>Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.</description><subject>Algorithms</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Parity</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Ranking</subject><subject>Science & Technology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1P3DAQhq0KVBbav4AscUTZztj5sI8opVBppcKyVaVeIieZlMDGWWynsP8eVwuoR-ZijfS8M56HsWOEOSLIL1e3W7-kvwsKYY4im4sUMsAPbIZQ6KRATPfYDEBiogGKA3bo_R0AoMjVR3YgZYoC8mLGfp8_bcj1A9lg1vzKuD5sk1Xs-c12GCi4vuHXk7FhGvgvs773vBsdLyPuzDqyfGnsfW__8NHyr72jJlDLL5zZ3PpPbL8za0-fX94j9vPb-aq8TBY_Lr6XZ4ukSaEIiawzbGqRo5JCay0UFm38Jma10qYlNNCioVplWholZK471aUFmbSTkKtWyiN2spu7cePDRD5Ud-PkbFxZibSIsuLNIlL5jmrc6L2jrtrEs43bVgjVP6XVf0qrqLTaKY3B45fxUz1Q-xZ7dRgBtQMeqR473_RkG3rDovRM52keV8SSZR9M6EdbjpMNMXr6_qh8Bh5WlUo</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Wu, Tong</creator><creator>Izaac, J. A.</creator><creator>Li, Zi-Xi</creator><creator>Wang, Kai</creator><creator>Chen, Zhao-Zhong</creator><creator>Zhu, Shining</creator><creator>Wang, J. B.</creator><creator>Ma, Xiao-Song</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2640-0734</orcidid><orcidid>https://orcid.org/0000-0001-7005-8855</orcidid><orcidid>https://orcid.org/0000-0001-7544-0084</orcidid><orcidid>https://orcid.org/0000-0002-8965-4953</orcidid><orcidid>https://orcid.org/0000-0002-6318-6012</orcidid><orcidid>https://orcid.org/0000-0002-0500-5690</orcidid></search><sort><creationdate>20201211</creationdate><title>Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs</title><author>Wu, Tong ; Izaac, J. A. ; Li, Zi-Xi ; Wang, Kai ; Chen, Zhao-Zhong ; Zhu, Shining ; Wang, J. B. ; Ma, Xiao-Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3b51cb2618329992817d12615b89ade1a0d1aeb8593a82369f8f47ea4f3068d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Parity</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Ranking</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tong</creatorcontrib><creatorcontrib>Izaac, J. A.</creatorcontrib><creatorcontrib>Li, Zi-Xi</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Chen, Zhao-Zhong</creatorcontrib><creatorcontrib>Zhu, Shining</creatorcontrib><creatorcontrib>Wang, J. B.</creatorcontrib><creatorcontrib>Ma, Xiao-Song</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tong</au><au>Izaac, J. A.</au><au>Li, Zi-Xi</au><au>Wang, Kai</au><au>Chen, Zhao-Zhong</au><au>Zhu, Shining</au><au>Wang, J. B.</au><au>Ma, Xiao-Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs</atitle><jtitle>Physical review letters</jtitle><stitle>PHYS REV LETT</stitle><addtitle>Phys Rev Lett</addtitle><date>2020-12-11</date><risdate>2020</risdate><volume>125</volume><issue>24</issue><spage>240501</spage><pages>240501-</pages><artnum>240501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Using quantum walks (QWs) to rank the centrality of nodes in networks, represented by graphs, is advantageous compared to certain widely used classical algorithms. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of a three-, a four-, and a nine-vertex directed graph with parity-time (PT) symmetric quantum walks by using high-dimensional photonic quantum states, multiple concatenated interferometers, and dimension dependent loss to achieve these. We demonstrate the advantage of the QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Furthermore, we extend our experiment from single-photon to two-photon Fock states as inputs and realize the centrality ranking of a nine-vertex graph. Our work shows that a PT symmetric multiphoton quantum walk paves the way for realizing advanced algorithms.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><pmid>33412067</pmid><doi>10.1103/PhysRevLett.125.240501</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2640-0734</orcidid><orcidid>https://orcid.org/0000-0001-7005-8855</orcidid><orcidid>https://orcid.org/0000-0001-7544-0084</orcidid><orcidid>https://orcid.org/0000-0002-8965-4953</orcidid><orcidid>https://orcid.org/0000-0002-6318-6012</orcidid><orcidid>https://orcid.org/0000-0002-0500-5690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-12, Vol.125 (24), p.240501, Article 240501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_webofscience_primary_000596461100003 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Algorithms Graph theory Graphical representations Graphs Parity Photons Physical Sciences Physics Physics, Multidisciplinary Ranking Science & Technology |
title | Experimental Parity-Time Symmetric Quantum Walks for Centrality Ranking on Directed Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Parity-Time%20Symmetric%20Quantum%20Walks%20for%20Centrality%20Ranking%20on%20Directed%20Graphs&rft.jtitle=Physical%20review%20letters&rft.au=Wu,%20Tong&rft.date=2020-12-11&rft.volume=125&rft.issue=24&rft.spage=240501&rft.pages=240501-&rft.artnum=240501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.240501&rft_dat=%3Cproquest_webof%3E2471032682%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471032682&rft_id=info:pmid/33412067&rfr_iscdi=true |