Diffusion of CH4 in amorphous solid water

Context. The diffusion of volatile species on amorphous solid water ice affects the chemistry on dust grains in the interstellar medium as well as the trapping of gases enriching planetary atmospheres or present in cometary material.Aims. The aim of the work is to provide diffusion coefficients of C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-11, Vol.643, Article 163
Hauptverfasser: Mate, Belen, Cazaux, Stephanie, Angel Satorre, Miguel, Molpeceres, German, Ortigoso, Juan, Millan, Carlos, Santonja, Carmina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 643
creator Mate, Belen
Cazaux, Stephanie
Angel Satorre, Miguel
Molpeceres, German
Ortigoso, Juan
Millan, Carlos
Santonja, Carmina
description Context. The diffusion of volatile species on amorphous solid water ice affects the chemistry on dust grains in the interstellar medium as well as the trapping of gases enriching planetary atmospheres or present in cometary material.Aims. The aim of the work is to provide diffusion coefficients of CH4 on amorphous solid water (ASW) and to understand how they are affected by the ASW structure.Methods. Ice mixtures of H2O and CH4 were grown in different conditions and the sublimation of CH4 was monitored via infrared spectroscopy or via the mass loss of a cryogenic quartz crystal microbalance. Diffusion coefficients were obtained from the experimental data assuming the systems obey Fick's law of diffusion. Monte Carlo simulations were used to model the different amorphous solid water ice structures investigated and were used to reproduce and interpret the experimental results.Results. Diffusion coefficients of methane on amorphous solid water have been measured to be between 10(-12) and 10(-13) cm(2) s(-1) for temperatures ranging between 42 K and 60 K. We show that diffusion can differ by one order of magnitude depending on the morphology of amorphous solid water. The porosity within water ice and the network created by pore coalescence enhance the diffusion of species within the pores. The diffusion rates derived experimentally cannot be used in our Monte Carlo simulations to reproduce the measurements.Conclusions. We conclude that Fick's laws can be used to describe diffusion at the macroscopic scale, while Monte Carlo simulations describe the microscopic scale where trapping of species in the ices (and their movement) is considered.
doi_str_mv 10.1051/0004-6361/202038705
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000595641400001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487164490</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-62ec007b9ca5c1636081f2cc5025aa0cd0398e4a3dc0cb3345eb92121a02c75e3</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOI7-AjcBVyJ17s2jTZdSHyMMuNF1SdMEM8w0tUkZ_PcGRly7uufCxzmcQ8g1wj2CxBUAiKLkJa4YMOCqAnlCFig4K6AS5SlZ_BHn5CLGbX4ZKr4gt4_euTn6MNDgaLMW1A9U78M0foY50hh2vqcHnex0Sc6c3kV79XuX5OP56b1ZF5u3l9fmYVOM2TAVJbMGoOpqo6XBnAgKHTNGApNag-mB18oKzXsDpuNcSNvVDBlqYKaSli_JzdF3nMLXbGNqt2GehhzZMqEqLIWoIVN3R-pgu-Ci8XYwth0nv9fTd5vryVqWAkVWgJlW_6cbn3TKgzRhHhL_Ae17YrE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487164490</pqid></control><display><type>article</type><title>Diffusion of CH4 in amorphous solid water</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mate, Belen ; Cazaux, Stephanie ; Angel Satorre, Miguel ; Molpeceres, German ; Ortigoso, Juan ; Millan, Carlos ; Santonja, Carmina</creator><creatorcontrib>Mate, Belen ; Cazaux, Stephanie ; Angel Satorre, Miguel ; Molpeceres, German ; Ortigoso, Juan ; Millan, Carlos ; Santonja, Carmina</creatorcontrib><description>Context. The diffusion of volatile species on amorphous solid water ice affects the chemistry on dust grains in the interstellar medium as well as the trapping of gases enriching planetary atmospheres or present in cometary material.Aims. The aim of the work is to provide diffusion coefficients of CH4 on amorphous solid water (ASW) and to understand how they are affected by the ASW structure.Methods. Ice mixtures of H2O and CH4 were grown in different conditions and the sublimation of CH4 was monitored via infrared spectroscopy or via the mass loss of a cryogenic quartz crystal microbalance. Diffusion coefficients were obtained from the experimental data assuming the systems obey Fick's law of diffusion. Monte Carlo simulations were used to model the different amorphous solid water ice structures investigated and were used to reproduce and interpret the experimental results.Results. Diffusion coefficients of methane on amorphous solid water have been measured to be between 10(-12) and 10(-13) cm(2) s(-1) for temperatures ranging between 42 K and 60 K. We show that diffusion can differ by one order of magnitude depending on the morphology of amorphous solid water. The porosity within water ice and the network created by pore coalescence enhance the diffusion of species within the pores. The diffusion rates derived experimentally cannot be used in our Monte Carlo simulations to reproduce the measurements.Conclusions. We conclude that Fick's laws can be used to describe diffusion at the macroscopic scale, while Monte Carlo simulations describe the microscopic scale where trapping of species in the ices (and their movement) is considered.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202038705</identifier><language>eng</language><publisher>LES ULIS CEDEX A: Edp Sciences S A</publisher><subject>Astronomy &amp; Astrophysics ; Coalescing ; Coefficients ; Comets ; Diffusion rate ; Interstellar chemistry ; Interstellar gas ; Interstellar matter ; Methane ; Microbalances ; Morphology ; Physical Sciences ; Planetary atmospheres ; Porosity ; Quartz crystals ; Science &amp; Technology ; Simulation ; Species diffusion ; Sublimation ; Trapping</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-11, Vol.643, Article 163</ispartof><rights>Copyright EDP Sciences Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000595641400001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p183t-62ec007b9ca5c1636081f2cc5025aa0cd0398e4a3dc0cb3345eb92121a02c75e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Mate, Belen</creatorcontrib><creatorcontrib>Cazaux, Stephanie</creatorcontrib><creatorcontrib>Angel Satorre, Miguel</creatorcontrib><creatorcontrib>Molpeceres, German</creatorcontrib><creatorcontrib>Ortigoso, Juan</creatorcontrib><creatorcontrib>Millan, Carlos</creatorcontrib><creatorcontrib>Santonja, Carmina</creatorcontrib><title>Diffusion of CH4 in amorphous solid water</title><title>Astronomy and astrophysics (Berlin)</title><addtitle>ASTRON ASTROPHYS</addtitle><description>Context. The diffusion of volatile species on amorphous solid water ice affects the chemistry on dust grains in the interstellar medium as well as the trapping of gases enriching planetary atmospheres or present in cometary material.Aims. The aim of the work is to provide diffusion coefficients of CH4 on amorphous solid water (ASW) and to understand how they are affected by the ASW structure.Methods. Ice mixtures of H2O and CH4 were grown in different conditions and the sublimation of CH4 was monitored via infrared spectroscopy or via the mass loss of a cryogenic quartz crystal microbalance. Diffusion coefficients were obtained from the experimental data assuming the systems obey Fick's law of diffusion. Monte Carlo simulations were used to model the different amorphous solid water ice structures investigated and were used to reproduce and interpret the experimental results.Results. Diffusion coefficients of methane on amorphous solid water have been measured to be between 10(-12) and 10(-13) cm(2) s(-1) for temperatures ranging between 42 K and 60 K. We show that diffusion can differ by one order of magnitude depending on the morphology of amorphous solid water. The porosity within water ice and the network created by pore coalescence enhance the diffusion of species within the pores. The diffusion rates derived experimentally cannot be used in our Monte Carlo simulations to reproduce the measurements.Conclusions. We conclude that Fick's laws can be used to describe diffusion at the macroscopic scale, while Monte Carlo simulations describe the microscopic scale where trapping of species in the ices (and their movement) is considered.</description><subject>Astronomy &amp; Astrophysics</subject><subject>Coalescing</subject><subject>Coefficients</subject><subject>Comets</subject><subject>Diffusion rate</subject><subject>Interstellar chemistry</subject><subject>Interstellar gas</subject><subject>Interstellar matter</subject><subject>Methane</subject><subject>Microbalances</subject><subject>Morphology</subject><subject>Physical Sciences</subject><subject>Planetary atmospheres</subject><subject>Porosity</subject><subject>Quartz crystals</subject><subject>Science &amp; Technology</subject><subject>Simulation</subject><subject>Species diffusion</subject><subject>Sublimation</subject><subject>Trapping</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkEtLxDAUhYMoOI7-AjcBVyJ17s2jTZdSHyMMuNF1SdMEM8w0tUkZ_PcGRly7uufCxzmcQ8g1wj2CxBUAiKLkJa4YMOCqAnlCFig4K6AS5SlZ_BHn5CLGbX4ZKr4gt4_euTn6MNDgaLMW1A9U78M0foY50hh2vqcHnex0Sc6c3kV79XuX5OP56b1ZF5u3l9fmYVOM2TAVJbMGoOpqo6XBnAgKHTNGApNag-mB18oKzXsDpuNcSNvVDBlqYKaSli_JzdF3nMLXbGNqt2GehhzZMqEqLIWoIVN3R-pgu-Ci8XYwth0nv9fTd5vryVqWAkVWgJlW_6cbn3TKgzRhHhL_Ae17YrE</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Mate, Belen</creator><creator>Cazaux, Stephanie</creator><creator>Angel Satorre, Miguel</creator><creator>Molpeceres, German</creator><creator>Ortigoso, Juan</creator><creator>Millan, Carlos</creator><creator>Santonja, Carmina</creator><general>Edp Sciences S A</general><general>EDP Sciences</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201101</creationdate><title>Diffusion of CH4 in amorphous solid water</title><author>Mate, Belen ; Cazaux, Stephanie ; Angel Satorre, Miguel ; Molpeceres, German ; Ortigoso, Juan ; Millan, Carlos ; Santonja, Carmina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-62ec007b9ca5c1636081f2cc5025aa0cd0398e4a3dc0cb3345eb92121a02c75e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy &amp; Astrophysics</topic><topic>Coalescing</topic><topic>Coefficients</topic><topic>Comets</topic><topic>Diffusion rate</topic><topic>Interstellar chemistry</topic><topic>Interstellar gas</topic><topic>Interstellar matter</topic><topic>Methane</topic><topic>Microbalances</topic><topic>Morphology</topic><topic>Physical Sciences</topic><topic>Planetary atmospheres</topic><topic>Porosity</topic><topic>Quartz crystals</topic><topic>Science &amp; Technology</topic><topic>Simulation</topic><topic>Species diffusion</topic><topic>Sublimation</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mate, Belen</creatorcontrib><creatorcontrib>Cazaux, Stephanie</creatorcontrib><creatorcontrib>Angel Satorre, Miguel</creatorcontrib><creatorcontrib>Molpeceres, German</creatorcontrib><creatorcontrib>Ortigoso, Juan</creatorcontrib><creatorcontrib>Millan, Carlos</creatorcontrib><creatorcontrib>Santonja, Carmina</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mate, Belen</au><au>Cazaux, Stephanie</au><au>Angel Satorre, Miguel</au><au>Molpeceres, German</au><au>Ortigoso, Juan</au><au>Millan, Carlos</au><au>Santonja, Carmina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion of CH4 in amorphous solid water</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><stitle>ASTRON ASTROPHYS</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>643</volume><artnum>163</artnum><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. The diffusion of volatile species on amorphous solid water ice affects the chemistry on dust grains in the interstellar medium as well as the trapping of gases enriching planetary atmospheres or present in cometary material.Aims. The aim of the work is to provide diffusion coefficients of CH4 on amorphous solid water (ASW) and to understand how they are affected by the ASW structure.Methods. Ice mixtures of H2O and CH4 were grown in different conditions and the sublimation of CH4 was monitored via infrared spectroscopy or via the mass loss of a cryogenic quartz crystal microbalance. Diffusion coefficients were obtained from the experimental data assuming the systems obey Fick's law of diffusion. Monte Carlo simulations were used to model the different amorphous solid water ice structures investigated and were used to reproduce and interpret the experimental results.Results. Diffusion coefficients of methane on amorphous solid water have been measured to be between 10(-12) and 10(-13) cm(2) s(-1) for temperatures ranging between 42 K and 60 K. We show that diffusion can differ by one order of magnitude depending on the morphology of amorphous solid water. The porosity within water ice and the network created by pore coalescence enhance the diffusion of species within the pores. The diffusion rates derived experimentally cannot be used in our Monte Carlo simulations to reproduce the measurements.Conclusions. We conclude that Fick's laws can be used to describe diffusion at the macroscopic scale, while Monte Carlo simulations describe the microscopic scale where trapping of species in the ices (and their movement) is considered.</abstract><cop>LES ULIS CEDEX A</cop><pub>Edp Sciences S A</pub><doi>10.1051/0004-6361/202038705</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-11, Vol.643, Article 163
issn 0004-6361
1432-0746
language eng
recordid cdi_webofscience_primary_000595641400001
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals
subjects Astronomy & Astrophysics
Coalescing
Coefficients
Comets
Diffusion rate
Interstellar chemistry
Interstellar gas
Interstellar matter
Methane
Microbalances
Morphology
Physical Sciences
Planetary atmospheres
Porosity
Quartz crystals
Science & Technology
Simulation
Species diffusion
Sublimation
Trapping
title Diffusion of CH4 in amorphous solid water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20of%20CH4%20in%20amorphous%20solid%20water&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Mate,%20Belen&rft.date=2020-11-01&rft.volume=643&rft.artnum=163&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202038705&rft_dat=%3Cproquest_webof%3E2487164490%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487164490&rft_id=info:pmid/&rfr_iscdi=true