Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution

An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2020, Vol.68, p.6481-6492
1. Verfasser: Turlapaty, Anish C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6492
container_issue
container_start_page 6481
container_title IEEE transactions on signal processing
container_volume 68
creator Turlapaty, Anish C.
description An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden signal in the model plays a key role in the parameter estimation, hence, its density is also estimated. The parameter estimation performance is analyzed by evaluation of the variational Bayesian Cramer Rao bound from the variational posterior densities. The numerical simulations show a good agreement between the bounds and the estimator variances. In order to benchmark the proposed estimators, the MSE and relative bias of the parameter estimates are compared with those of the expectation maximization algorithm. The proposed estimator has generally outperformed the benchmark algorithm. The performance improvement is significant for the Nakagami parameter varying from 9 dB for a larger sample size to 24 dB for a smaller sample size. Similarly, the performance for the variance parameter varies from 1.5 dB to 5.2 dB with increasing the sample size. The proposed algorithm is also tested on a simulated data-set based on correlated latent variables and the estimator is found to be effective for weakly correlated data. Finally, for the hidden signal, the estimated density from the proposed method is found to be having lower Kullback Leibler divergence in comparison to that of the expectation maximization algorithm.
doi_str_mv 10.1109/TSP.2020.3037397
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000595525100005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9257102</ieee_id><sourcerecordid>2467294401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f7975c08ed2deae8e0bd10f5e4eb02dc466712e72e0268b6db2dad39c6b20c763</originalsourceid><addsrcrecordid>eNqNkEtLxDAURoso-NwLbgoupeNNmkez1PqEQQdGxV1J01uJ2MmYZBD_vakjunWVj5tzLtwvyw4JTAgBdfown00oUJiUUMpSyY1shyhGCmBSbKYMvCx4JZ-3s90QXgEIY0rsZN2T9lZH6xb6LT_XnxisXuSXIdrhe5q7Pp_HFNPEJGTm3RJ9tBjGn9oNSxdsxPxaD4POp-6luHN-SOBFMrxtV-OS_Wyr128BD37evezx6vKhvimm99e39dm0MFSRWPRSSW6gwo52qLFCaDsCPUeGLdDOMCEkoSgpAhVVK7qWdrorlREtBSNFuZcdr_cuvXtfYYjNq1v5dFloKBOSKsaAJArWlPEuBI99s_TpWv_ZEGjGLpvUZTN22fx0mZSTtfKBreuDsbgw-KsBAFecU05gjImu_k_XNn4XXbvVIib1aK1axD9FUS4J0PILJHGSSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467294401</pqid></control><display><type>article</type><title>Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Turlapaty, Anish C.</creator><creatorcontrib>Turlapaty, Anish C.</creatorcontrib><description>An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden signal in the model plays a key role in the parameter estimation, hence, its density is also estimated. The parameter estimation performance is analyzed by evaluation of the variational Bayesian Cramer Rao bound from the variational posterior densities. The numerical simulations show a good agreement between the bounds and the estimator variances. In order to benchmark the proposed estimators, the MSE and relative bias of the parameter estimates are compared with those of the expectation maximization algorithm. The proposed estimator has generally outperformed the benchmark algorithm. The performance improvement is significant for the Nakagami parameter varying from 9 dB for a larger sample size to 24 dB for a smaller sample size. Similarly, the performance for the variance parameter varies from 1.5 dB to 5.2 dB with increasing the sample size. The proposed algorithm is also tested on a simulated data-set based on correlated latent variables and the estimator is found to be effective for weakly correlated data. Finally, for the hidden signal, the estimated density from the proposed method is found to be having lower Kullback Leibler divergence in comparison to that of the expectation maximization algorithm.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.3037397</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Benchmarks ; Composite gamma-Log-normal ; Computer simulation ; Density ; Engineering ; Engineering, Electrical &amp; Electronic ; Estimation ; fading/shadowing channels ; free energy ; Iterative methods ; Mathematical models ; Maximization ; Nakagami distribution ; Normal distribution ; Numerical models ; Numerical simulation ; Optimization ; Parameter estimation ; Performance evaluation ; Science &amp; Technology ; Signal processing algorithms ; Statistical analysis ; Technology ; Variance ; variational bayesian</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.6481-6492</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000595525100005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c291t-f7975c08ed2deae8e0bd10f5e4eb02dc466712e72e0268b6db2dad39c6b20c763</citedby><cites>FETCH-LOGICAL-c291t-f7975c08ed2deae8e0bd10f5e4eb02dc466712e72e0268b6db2dad39c6b20c763</cites><orcidid>0000-0003-0078-3845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9257102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9257102$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Turlapaty, Anish C.</creatorcontrib><title>Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><addtitle>IEEE T SIGNAL PROCES</addtitle><description>An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden signal in the model plays a key role in the parameter estimation, hence, its density is also estimated. The parameter estimation performance is analyzed by evaluation of the variational Bayesian Cramer Rao bound from the variational posterior densities. The numerical simulations show a good agreement between the bounds and the estimator variances. In order to benchmark the proposed estimators, the MSE and relative bias of the parameter estimates are compared with those of the expectation maximization algorithm. The proposed estimator has generally outperformed the benchmark algorithm. The performance improvement is significant for the Nakagami parameter varying from 9 dB for a larger sample size to 24 dB for a smaller sample size. Similarly, the performance for the variance parameter varies from 1.5 dB to 5.2 dB with increasing the sample size. The proposed algorithm is also tested on a simulated data-set based on correlated latent variables and the estimator is found to be effective for weakly correlated data. Finally, for the hidden signal, the estimated density from the proposed method is found to be having lower Kullback Leibler divergence in comparison to that of the expectation maximization algorithm.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Benchmarks</subject><subject>Composite gamma-Log-normal</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Estimation</subject><subject>fading/shadowing channels</subject><subject>free energy</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Nakagami distribution</subject><subject>Normal distribution</subject><subject>Numerical models</subject><subject>Numerical simulation</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Performance evaluation</subject><subject>Science &amp; Technology</subject><subject>Signal processing algorithms</subject><subject>Statistical analysis</subject><subject>Technology</subject><subject>Variance</subject><subject>variational bayesian</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkEtLxDAURoso-NwLbgoupeNNmkez1PqEQQdGxV1J01uJ2MmYZBD_vakjunWVj5tzLtwvyw4JTAgBdfown00oUJiUUMpSyY1shyhGCmBSbKYMvCx4JZ-3s90QXgEIY0rsZN2T9lZH6xb6LT_XnxisXuSXIdrhe5q7Pp_HFNPEJGTm3RJ9tBjGn9oNSxdsxPxaD4POp-6luHN-SOBFMrxtV-OS_Wyr128BD37evezx6vKhvimm99e39dm0MFSRWPRSSW6gwo52qLFCaDsCPUeGLdDOMCEkoSgpAhVVK7qWdrorlREtBSNFuZcdr_cuvXtfYYjNq1v5dFloKBOSKsaAJArWlPEuBI99s_TpWv_ZEGjGLpvUZTN22fx0mZSTtfKBreuDsbgw-KsBAFecU05gjImu_k_XNn4XXbvVIib1aK1axD9FUS4J0PILJHGSSQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Turlapaty, Anish C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0078-3845</orcidid></search><sort><creationdate>2020</creationdate><title>Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution</title><author>Turlapaty, Anish C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f7975c08ed2deae8e0bd10f5e4eb02dc466712e72e0268b6db2dad39c6b20c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Benchmarks</topic><topic>Composite gamma-Log-normal</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Estimation</topic><topic>fading/shadowing channels</topic><topic>free energy</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Nakagami distribution</topic><topic>Normal distribution</topic><topic>Numerical models</topic><topic>Numerical simulation</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Performance evaluation</topic><topic>Science &amp; Technology</topic><topic>Signal processing algorithms</topic><topic>Statistical analysis</topic><topic>Technology</topic><topic>Variance</topic><topic>variational bayesian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turlapaty, Anish C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Turlapaty, Anish C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><stitle>IEEE T SIGNAL PROCES</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>6481</spage><epage>6492</epage><pages>6481-6492</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden signal in the model plays a key role in the parameter estimation, hence, its density is also estimated. The parameter estimation performance is analyzed by evaluation of the variational Bayesian Cramer Rao bound from the variational posterior densities. The numerical simulations show a good agreement between the bounds and the estimator variances. In order to benchmark the proposed estimators, the MSE and relative bias of the parameter estimates are compared with those of the expectation maximization algorithm. The proposed estimator has generally outperformed the benchmark algorithm. The performance improvement is significant for the Nakagami parameter varying from 9 dB for a larger sample size to 24 dB for a smaller sample size. Similarly, the performance for the variance parameter varies from 1.5 dB to 5.2 dB with increasing the sample size. The proposed algorithm is also tested on a simulated data-set based on correlated latent variables and the estimator is found to be effective for weakly correlated data. Finally, for the hidden signal, the estimated density from the proposed method is found to be having lower Kullback Leibler divergence in comparison to that of the expectation maximization algorithm.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.3037397</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0078-3845</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2020, Vol.68, p.6481-6492
issn 1053-587X
1941-0476
language eng
recordid cdi_webofscience_primary_000595525100005
source IEEE Electronic Library (IEL)
subjects Algorithms
Bayes methods
Bayesian analysis
Benchmarks
Composite gamma-Log-normal
Computer simulation
Density
Engineering
Engineering, Electrical & Electronic
Estimation
fading/shadowing channels
free energy
Iterative methods
Mathematical models
Maximization
Nakagami distribution
Normal distribution
Numerical models
Numerical simulation
Optimization
Parameter estimation
Performance evaluation
Science & Technology
Signal processing algorithms
Statistical analysis
Technology
Variance
variational bayesian
title Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Bayesian%20Estimation%20of%20Statistical%20Properties%20of%20Composite%20Gamma%20Log-Normal%20Distribution&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Turlapaty,%20Anish%20C.&rft.date=2020&rft.volume=68&rft.spage=6481&rft.epage=6492&rft.pages=6481-6492&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.3037397&rft_dat=%3Cproquest_RIE%3E2467294401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467294401&rft_id=info:pmid/&rft_ieee_id=9257102&rfr_iscdi=true