Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution
An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2020, Vol.68, p.6481-6492 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6492 |
---|---|
container_issue | |
container_start_page | 6481 |
container_title | IEEE transactions on signal processing |
container_volume | 68 |
creator | Turlapaty, Anish C. |
description | An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden signal in the model plays a key role in the parameter estimation, hence, its density is also estimated. The parameter estimation performance is analyzed by evaluation of the variational Bayesian Cramer Rao bound from the variational posterior densities. The numerical simulations show a good agreement between the bounds and the estimator variances. In order to benchmark the proposed estimators, the MSE and relative bias of the parameter estimates are compared with those of the expectation maximization algorithm. The proposed estimator has generally outperformed the benchmark algorithm. The performance improvement is significant for the Nakagami parameter varying from 9 dB for a larger sample size to 24 dB for a smaller sample size. Similarly, the performance for the variance parameter varies from 1.5 dB to 5.2 dB with increasing the sample size. The proposed algorithm is also tested on a simulated data-set based on correlated latent variables and the estimator is found to be effective for weakly correlated data. Finally, for the hidden signal, the estimated density from the proposed method is found to be having lower Kullback Leibler divergence in comparison to that of the expectation maximization algorithm. |
doi_str_mv | 10.1109/TSP.2020.3037397 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_webofscience_primary_000595525100005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9257102</ieee_id><sourcerecordid>2467294401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f7975c08ed2deae8e0bd10f5e4eb02dc466712e72e0268b6db2dad39c6b20c763</originalsourceid><addsrcrecordid>eNqNkEtLxDAURoso-NwLbgoupeNNmkez1PqEQQdGxV1J01uJ2MmYZBD_vakjunWVj5tzLtwvyw4JTAgBdfown00oUJiUUMpSyY1shyhGCmBSbKYMvCx4JZ-3s90QXgEIY0rsZN2T9lZH6xb6LT_XnxisXuSXIdrhe5q7Pp_HFNPEJGTm3RJ9tBjGn9oNSxdsxPxaD4POp-6luHN-SOBFMrxtV-OS_Wyr128BD37evezx6vKhvimm99e39dm0MFSRWPRSSW6gwo52qLFCaDsCPUeGLdDOMCEkoSgpAhVVK7qWdrorlREtBSNFuZcdr_cuvXtfYYjNq1v5dFloKBOSKsaAJArWlPEuBI99s_TpWv_ZEGjGLpvUZTN22fx0mZSTtfKBreuDsbgw-KsBAFecU05gjImu_k_XNn4XXbvVIib1aK1axD9FUS4J0PILJHGSSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467294401</pqid></control><display><type>article</type><title>Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Turlapaty, Anish C.</creator><creatorcontrib>Turlapaty, Anish C.</creatorcontrib><description>An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden signal in the model plays a key role in the parameter estimation, hence, its density is also estimated. The parameter estimation performance is analyzed by evaluation of the variational Bayesian Cramer Rao bound from the variational posterior densities. The numerical simulations show a good agreement between the bounds and the estimator variances. In order to benchmark the proposed estimators, the MSE and relative bias of the parameter estimates are compared with those of the expectation maximization algorithm. The proposed estimator has generally outperformed the benchmark algorithm. The performance improvement is significant for the Nakagami parameter varying from 9 dB for a larger sample size to 24 dB for a smaller sample size. Similarly, the performance for the variance parameter varies from 1.5 dB to 5.2 dB with increasing the sample size. The proposed algorithm is also tested on a simulated data-set based on correlated latent variables and the estimator is found to be effective for weakly correlated data. Finally, for the hidden signal, the estimated density from the proposed method is found to be having lower Kullback Leibler divergence in comparison to that of the expectation maximization algorithm.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.3037397</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Benchmarks ; Composite gamma-Log-normal ; Computer simulation ; Density ; Engineering ; Engineering, Electrical & Electronic ; Estimation ; fading/shadowing channels ; free energy ; Iterative methods ; Mathematical models ; Maximization ; Nakagami distribution ; Normal distribution ; Numerical models ; Numerical simulation ; Optimization ; Parameter estimation ; Performance evaluation ; Science & Technology ; Signal processing algorithms ; Statistical analysis ; Technology ; Variance ; variational bayesian</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.6481-6492</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000595525100005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c291t-f7975c08ed2deae8e0bd10f5e4eb02dc466712e72e0268b6db2dad39c6b20c763</citedby><cites>FETCH-LOGICAL-c291t-f7975c08ed2deae8e0bd10f5e4eb02dc466712e72e0268b6db2dad39c6b20c763</cites><orcidid>0000-0003-0078-3845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9257102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,28253,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9257102$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Turlapaty, Anish C.</creatorcontrib><title>Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><addtitle>IEEE T SIGNAL PROCES</addtitle><description>An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden signal in the model plays a key role in the parameter estimation, hence, its density is also estimated. The parameter estimation performance is analyzed by evaluation of the variational Bayesian Cramer Rao bound from the variational posterior densities. The numerical simulations show a good agreement between the bounds and the estimator variances. In order to benchmark the proposed estimators, the MSE and relative bias of the parameter estimates are compared with those of the expectation maximization algorithm. The proposed estimator has generally outperformed the benchmark algorithm. The performance improvement is significant for the Nakagami parameter varying from 9 dB for a larger sample size to 24 dB for a smaller sample size. Similarly, the performance for the variance parameter varies from 1.5 dB to 5.2 dB with increasing the sample size. The proposed algorithm is also tested on a simulated data-set based on correlated latent variables and the estimator is found to be effective for weakly correlated data. Finally, for the hidden signal, the estimated density from the proposed method is found to be having lower Kullback Leibler divergence in comparison to that of the expectation maximization algorithm.</description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Benchmarks</subject><subject>Composite gamma-Log-normal</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Estimation</subject><subject>fading/shadowing channels</subject><subject>free energy</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Nakagami distribution</subject><subject>Normal distribution</subject><subject>Numerical models</subject><subject>Numerical simulation</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Performance evaluation</subject><subject>Science & Technology</subject><subject>Signal processing algorithms</subject><subject>Statistical analysis</subject><subject>Technology</subject><subject>Variance</subject><subject>variational bayesian</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkEtLxDAURoso-NwLbgoupeNNmkez1PqEQQdGxV1J01uJ2MmYZBD_vakjunWVj5tzLtwvyw4JTAgBdfown00oUJiUUMpSyY1shyhGCmBSbKYMvCx4JZ-3s90QXgEIY0rsZN2T9lZH6xb6LT_XnxisXuSXIdrhe5q7Pp_HFNPEJGTm3RJ9tBjGn9oNSxdsxPxaD4POp-6luHN-SOBFMrxtV-OS_Wyr128BD37evezx6vKhvimm99e39dm0MFSRWPRSSW6gwo52qLFCaDsCPUeGLdDOMCEkoSgpAhVVK7qWdrorlREtBSNFuZcdr_cuvXtfYYjNq1v5dFloKBOSKsaAJArWlPEuBI99s_TpWv_ZEGjGLpvUZTN22fx0mZSTtfKBreuDsbgw-KsBAFecU05gjImu_k_XNn4XXbvVIib1aK1axD9FUS4J0PILJHGSSQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Turlapaty, Anish C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0078-3845</orcidid></search><sort><creationdate>2020</creationdate><title>Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution</title><author>Turlapaty, Anish C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f7975c08ed2deae8e0bd10f5e4eb02dc466712e72e0268b6db2dad39c6b20c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Benchmarks</topic><topic>Composite gamma-Log-normal</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Estimation</topic><topic>fading/shadowing channels</topic><topic>free energy</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Nakagami distribution</topic><topic>Normal distribution</topic><topic>Numerical models</topic><topic>Numerical simulation</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Performance evaluation</topic><topic>Science & Technology</topic><topic>Signal processing algorithms</topic><topic>Statistical analysis</topic><topic>Technology</topic><topic>Variance</topic><topic>variational bayesian</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turlapaty, Anish C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Turlapaty, Anish C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><stitle>IEEE T SIGNAL PROCES</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>6481</spage><epage>6492</epage><pages>6481-6492</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>An iterative variational Bayesian method is proposed for estimation of the statistical properties of the composite gamma log-normal distribution, specifically, the Nakagami parameter of the gamma component and the mean and variance parameters of the log-normal component. Moreover, the random hidden signal in the model plays a key role in the parameter estimation, hence, its density is also estimated. The parameter estimation performance is analyzed by evaluation of the variational Bayesian Cramer Rao bound from the variational posterior densities. The numerical simulations show a good agreement between the bounds and the estimator variances. In order to benchmark the proposed estimators, the MSE and relative bias of the parameter estimates are compared with those of the expectation maximization algorithm. The proposed estimator has generally outperformed the benchmark algorithm. The performance improvement is significant for the Nakagami parameter varying from 9 dB for a larger sample size to 24 dB for a smaller sample size. Similarly, the performance for the variance parameter varies from 1.5 dB to 5.2 dB with increasing the sample size. The proposed algorithm is also tested on a simulated data-set based on correlated latent variables and the estimator is found to be effective for weakly correlated data. Finally, for the hidden signal, the estimated density from the proposed method is found to be having lower Kullback Leibler divergence in comparison to that of the expectation maximization algorithm.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.3037397</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0078-3845</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2020, Vol.68, p.6481-6492 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_webofscience_primary_000595525100005 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bayes methods Bayesian analysis Benchmarks Composite gamma-Log-normal Computer simulation Density Engineering Engineering, Electrical & Electronic Estimation fading/shadowing channels free energy Iterative methods Mathematical models Maximization Nakagami distribution Normal distribution Numerical models Numerical simulation Optimization Parameter estimation Performance evaluation Science & Technology Signal processing algorithms Statistical analysis Technology Variance variational bayesian |
title | Variational Bayesian Estimation of Statistical Properties of Composite Gamma Log-Normal Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Bayesian%20Estimation%20of%20Statistical%20Properties%20of%20Composite%20Gamma%20Log-Normal%20Distribution&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Turlapaty,%20Anish%20C.&rft.date=2020&rft.volume=68&rft.spage=6481&rft.epage=6492&rft.pages=6481-6492&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.3037397&rft_dat=%3Cproquest_RIE%3E2467294401%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467294401&rft_id=info:pmid/&rft_ieee_id=9257102&rfr_iscdi=true |