Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes

The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-11, Vol.10 (11), p.2279, Article 2279
Hauptverfasser: Karaeva, Aida R., Urvanov, Sergey A., Kazennov, Nikita V., Mitberg, Eduard B., Mordkovich, Vladimir Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 2279
container_title Nanomaterials (Basel, Switzerland)
container_volume 10
creator Karaeva, Aida R.
Urvanov, Sergey A.
Kazennov, Nikita V.
Mitberg, Eduard B.
Mordkovich, Vladimir Z.
description The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene catalyst Fe(C5H5)(2). The formation of very long (up to several mu m) straight monocrystal metal kernels inside the carbon nanotubes was the most interesting effect. The use of trimetal catalysts (Fe1-x-yCoxNiy)(C5H5)(2) resulted in the sharp increase in the yield of carbon nanotubes. The electrical conductivity of the produced nanotubes is determined by the nature of the catalyst. The variation of individual metals in the Ni-Co-Fe leads to a drop of the electrical resistivity of nanotube samples by the order of magnitude, i.e., from 1.0 x 10(-3) to 1.1 x 10(-5) ohm center dot m. A controlled change in the electrophysical properties of the nanotubes can make it possible to expand their use as fillers in composites, photothermal and tunable magnetic nanomaterials with pre-designed electrical conductivity and other electromagnetic properties.
doi_str_mv 10.3390/nano10112279
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000594396000001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_173da18ce30a464c85d3336f095da1e3</doaj_id><sourcerecordid>2463100337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-442641c6bdd0611ca4248ecb93ca5fe76db808feabf2139c3c84c844d809219f3</originalsourceid><addsrcrecordid>eNqNklFrFDEQgBdRbKl98wcEfBHsaZLJ7iYvgiy1HlQFq76GbHa2zbGXnEn25Pz15rxaWp8MgYTJly8zYarqOaOvARR9440PjDLGeaseVcectmohlGKP7-2PqtOUVrQMxUDW8LQ6AuAMKKfH1XS18_kGk0tn5CrH2eY5IjF-IOcT2hydNRP5sj_PbuvyjoSRdCb2wZNP5e0895jIX8cvHEjYYiQXMcwb8n25XJKPmM00BYse07PqyWimhKe360n17f351-7D4vLzxbJ7d7mwJb-8EII3gtmmHwbaMGaN4EKi7RVYU4_YNkMvqRzR9GMpQ1mwUpQpBkkVZ2qEk2p58A7BrPQmurWJOx2M038CIV5rE7OzE2rWwmCYtAjUiKZo6gEAmpGqusQRiuvtwbWZ-zUOpY4czfRA-vDEuxt9Hba6bZSsuSyCl7eCGH7MmLJeu2RxmozHMCfNRQOMUoC2oC_-QVdhjr581Z7iLYOG1oU6O1A2hpQijnfJMKr3XaHvd0XBXx3wn9iHMVmH3uLdldIVtRKgmn1_UFZo-f9057LJLvguzD7Db7sXypw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462713605</pqid></control><display><type>article</type><title>Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Karaeva, Aida R. ; Urvanov, Sergey A. ; Kazennov, Nikita V. ; Mitberg, Eduard B. ; Mordkovich, Vladimir Z.</creator><creatorcontrib>Karaeva, Aida R. ; Urvanov, Sergey A. ; Kazennov, Nikita V. ; Mitberg, Eduard B. ; Mordkovich, Vladimir Z.</creatorcontrib><description>The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene catalyst Fe(C5H5)(2). The formation of very long (up to several mu m) straight monocrystal metal kernels inside the carbon nanotubes was the most interesting effect. The use of trimetal catalysts (Fe1-x-yCoxNiy)(C5H5)(2) resulted in the sharp increase in the yield of carbon nanotubes. The electrical conductivity of the produced nanotubes is determined by the nature of the catalyst. The variation of individual metals in the Ni-Co-Fe leads to a drop of the electrical resistivity of nanotube samples by the order of magnitude, i.e., from 1.0 x 10(-3) to 1.1 x 10(-5) ohm center dot m. A controlled change in the electrophysical properties of the nanotubes can make it possible to expand their use as fillers in composites, photothermal and tunable magnetic nanomaterials with pre-designed electrical conductivity and other electromagnetic properties.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10112279</identifier><identifier>PMID: 33213020</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Aerosols ; Carbon ; Carbon nanotubes ; Catalysts ; Chemical vapor deposition ; Chemistry ; Chemistry, Multidisciplinary ; Cobalt ; Decomposition ; Electrical conductivity ; Electrical resistivity ; Electromagnetic properties ; Ethanol ; Hydrocarbons ; Iron ; Laboratories ; Magnetic properties ; Materials Science ; Materials Science, Multidisciplinary ; metallocene ; Metallocenes ; Metals ; Morphology ; Nanomaterials ; Nanoparticles ; Nanoscience &amp; Nanotechnology ; Nanotechnology ; nanotube ; Nanotubes ; Nickel ; Physical Sciences ; Physics ; Physics, Applied ; Process controls ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Single crystals ; Sulfur ; Synthesis ; Technology</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-11, Vol.10 (11), p.2279, Article 2279</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000594396000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c385t-442641c6bdd0611ca4248ecb93ca5fe76db808feabf2139c3c84c844d809219f3</citedby><cites>FETCH-LOGICAL-c385t-442641c6bdd0611ca4248ecb93ca5fe76db808feabf2139c3c84c844d809219f3</cites><orcidid>0000-0002-9553-7657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698528/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698528/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids></links><search><creatorcontrib>Karaeva, Aida R.</creatorcontrib><creatorcontrib>Urvanov, Sergey A.</creatorcontrib><creatorcontrib>Kazennov, Nikita V.</creatorcontrib><creatorcontrib>Mitberg, Eduard B.</creatorcontrib><creatorcontrib>Mordkovich, Vladimir Z.</creatorcontrib><title>Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>NANOMATERIALS-BASEL</addtitle><description>The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene catalyst Fe(C5H5)(2). The formation of very long (up to several mu m) straight monocrystal metal kernels inside the carbon nanotubes was the most interesting effect. The use of trimetal catalysts (Fe1-x-yCoxNiy)(C5H5)(2) resulted in the sharp increase in the yield of carbon nanotubes. The electrical conductivity of the produced nanotubes is determined by the nature of the catalyst. The variation of individual metals in the Ni-Co-Fe leads to a drop of the electrical resistivity of nanotube samples by the order of magnitude, i.e., from 1.0 x 10(-3) to 1.1 x 10(-5) ohm center dot m. A controlled change in the electrophysical properties of the nanotubes can make it possible to expand their use as fillers in composites, photothermal and tunable magnetic nanomaterials with pre-designed electrical conductivity and other electromagnetic properties.</description><subject>Aerosols</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Chemical vapor deposition</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Cobalt</subject><subject>Decomposition</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electromagnetic properties</subject><subject>Ethanol</subject><subject>Hydrocarbons</subject><subject>Iron</subject><subject>Laboratories</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>metallocene</subject><subject>Metallocenes</subject><subject>Metals</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanotechnology</subject><subject>nanotube</subject><subject>Nanotubes</subject><subject>Nickel</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Process controls</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Single crystals</subject><subject>Sulfur</subject><subject>Synthesis</subject><subject>Technology</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNklFrFDEQgBdRbKl98wcEfBHsaZLJ7iYvgiy1HlQFq76GbHa2zbGXnEn25Pz15rxaWp8MgYTJly8zYarqOaOvARR9440PjDLGeaseVcectmohlGKP7-2PqtOUVrQMxUDW8LQ6AuAMKKfH1XS18_kGk0tn5CrH2eY5IjF-IOcT2hydNRP5sj_PbuvyjoSRdCb2wZNP5e0895jIX8cvHEjYYiQXMcwb8n25XJKPmM00BYse07PqyWimhKe360n17f351-7D4vLzxbJ7d7mwJb-8EII3gtmmHwbaMGaN4EKi7RVYU4_YNkMvqRzR9GMpQ1mwUpQpBkkVZ2qEk2p58A7BrPQmurWJOx2M038CIV5rE7OzE2rWwmCYtAjUiKZo6gEAmpGqusQRiuvtwbWZ-zUOpY4czfRA-vDEuxt9Hba6bZSsuSyCl7eCGH7MmLJeu2RxmozHMCfNRQOMUoC2oC_-QVdhjr581Z7iLYOG1oU6O1A2hpQijnfJMKr3XaHvd0XBXx3wn9iHMVmH3uLdldIVtRKgmn1_UFZo-f9057LJLvguzD7Db7sXypw</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Karaeva, Aida R.</creator><creator>Urvanov, Sergey A.</creator><creator>Kazennov, Nikita V.</creator><creator>Mitberg, Eduard B.</creator><creator>Mordkovich, Vladimir Z.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9553-7657</orcidid></search><sort><creationdate>20201117</creationdate><title>Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes</title><author>Karaeva, Aida R. ; Urvanov, Sergey A. ; Kazennov, Nikita V. ; Mitberg, Eduard B. ; Mordkovich, Vladimir Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-442641c6bdd0611ca4248ecb93ca5fe76db808feabf2139c3c84c844d809219f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosols</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Chemical vapor deposition</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Cobalt</topic><topic>Decomposition</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electromagnetic properties</topic><topic>Ethanol</topic><topic>Hydrocarbons</topic><topic>Iron</topic><topic>Laboratories</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>metallocene</topic><topic>Metallocenes</topic><topic>Metals</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanotechnology</topic><topic>nanotube</topic><topic>Nanotubes</topic><topic>Nickel</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Process controls</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Single crystals</topic><topic>Sulfur</topic><topic>Synthesis</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaeva, Aida R.</creatorcontrib><creatorcontrib>Urvanov, Sergey A.</creatorcontrib><creatorcontrib>Kazennov, Nikita V.</creatorcontrib><creatorcontrib>Mitberg, Eduard B.</creatorcontrib><creatorcontrib>Mordkovich, Vladimir Z.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaeva, Aida R.</au><au>Urvanov, Sergey A.</au><au>Kazennov, Nikita V.</au><au>Mitberg, Eduard B.</au><au>Mordkovich, Vladimir Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><stitle>NANOMATERIALS-BASEL</stitle><date>2020-11-17</date><risdate>2020</risdate><volume>10</volume><issue>11</issue><spage>2279</spage><pages>2279-</pages><artnum>2279</artnum><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene catalyst Fe(C5H5)(2). The formation of very long (up to several mu m) straight monocrystal metal kernels inside the carbon nanotubes was the most interesting effect. The use of trimetal catalysts (Fe1-x-yCoxNiy)(C5H5)(2) resulted in the sharp increase in the yield of carbon nanotubes. The electrical conductivity of the produced nanotubes is determined by the nature of the catalyst. The variation of individual metals in the Ni-Co-Fe leads to a drop of the electrical resistivity of nanotube samples by the order of magnitude, i.e., from 1.0 x 10(-3) to 1.1 x 10(-5) ohm center dot m. A controlled change in the electrophysical properties of the nanotubes can make it possible to expand their use as fillers in composites, photothermal and tunable magnetic nanomaterials with pre-designed electrical conductivity and other electromagnetic properties.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33213020</pmid><doi>10.3390/nano10112279</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9553-7657</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2020-11, Vol.10 (11), p.2279, Article 2279
issn 2079-4991
2079-4991
language eng
recordid cdi_webofscience_primary_000594396000001CitationCount
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Aerosols
Carbon
Carbon nanotubes
Catalysts
Chemical vapor deposition
Chemistry
Chemistry, Multidisciplinary
Cobalt
Decomposition
Electrical conductivity
Electrical resistivity
Electromagnetic properties
Ethanol
Hydrocarbons
Iron
Laboratories
Magnetic properties
Materials Science
Materials Science, Multidisciplinary
metallocene
Metallocenes
Metals
Morphology
Nanomaterials
Nanoparticles
Nanoscience & Nanotechnology
Nanotechnology
nanotube
Nanotubes
Nickel
Physical Sciences
Physics
Physics, Applied
Process controls
Science & Technology
Science & Technology - Other Topics
Single crystals
Sulfur
Synthesis
Technology
title Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20Structure%20and%20Electrical%20Resistivity%20of%20Carbon%20Nanotubes%20Synthesized%20over%20Group%20VIII%20Metallocenes&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Karaeva,%20Aida%20R.&rft.date=2020-11-17&rft.volume=10&rft.issue=11&rft.spage=2279&rft.pages=2279-&rft.artnum=2279&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10112279&rft_dat=%3Cproquest_webof%3E2463100337%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462713605&rft_id=info:pmid/33213020&rft_doaj_id=oai_doaj_org_article_173da18ce30a464c85d3336f095da1e3&rfr_iscdi=true