Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes
The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene ca...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2020-11, Vol.10 (11), p.2279, Article 2279 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 2279 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 10 |
creator | Karaeva, Aida R. Urvanov, Sergey A. Kazennov, Nikita V. Mitberg, Eduard B. Mordkovich, Vladimir Z. |
description | The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene catalyst Fe(C5H5)(2). The formation of very long (up to several mu m) straight monocrystal metal kernels inside the carbon nanotubes was the most interesting effect. The use of trimetal catalysts (Fe1-x-yCoxNiy)(C5H5)(2) resulted in the sharp increase in the yield of carbon nanotubes. The electrical conductivity of the produced nanotubes is determined by the nature of the catalyst. The variation of individual metals in the Ni-Co-Fe leads to a drop of the electrical resistivity of nanotube samples by the order of magnitude, i.e., from 1.0 x 10(-3) to 1.1 x 10(-5) ohm center dot m. A controlled change in the electrophysical properties of the nanotubes can make it possible to expand their use as fillers in composites, photothermal and tunable magnetic nanomaterials with pre-designed electrical conductivity and other electromagnetic properties. |
doi_str_mv | 10.3390/nano10112279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000594396000001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_173da18ce30a464c85d3336f095da1e3</doaj_id><sourcerecordid>2463100337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-442641c6bdd0611ca4248ecb93ca5fe76db808feabf2139c3c84c844d809219f3</originalsourceid><addsrcrecordid>eNqNklFrFDEQgBdRbKl98wcEfBHsaZLJ7iYvgiy1HlQFq76GbHa2zbGXnEn25Pz15rxaWp8MgYTJly8zYarqOaOvARR9440PjDLGeaseVcectmohlGKP7-2PqtOUVrQMxUDW8LQ6AuAMKKfH1XS18_kGk0tn5CrH2eY5IjF-IOcT2hydNRP5sj_PbuvyjoSRdCb2wZNP5e0895jIX8cvHEjYYiQXMcwb8n25XJKPmM00BYse07PqyWimhKe360n17f351-7D4vLzxbJ7d7mwJb-8EII3gtmmHwbaMGaN4EKi7RVYU4_YNkMvqRzR9GMpQ1mwUpQpBkkVZ2qEk2p58A7BrPQmurWJOx2M038CIV5rE7OzE2rWwmCYtAjUiKZo6gEAmpGqusQRiuvtwbWZ-zUOpY4czfRA-vDEuxt9Hba6bZSsuSyCl7eCGH7MmLJeu2RxmozHMCfNRQOMUoC2oC_-QVdhjr581Z7iLYOG1oU6O1A2hpQijnfJMKr3XaHvd0XBXx3wn9iHMVmH3uLdldIVtRKgmn1_UFZo-f9057LJLvguzD7Db7sXypw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462713605</pqid></control><display><type>article</type><title>Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Karaeva, Aida R. ; Urvanov, Sergey A. ; Kazennov, Nikita V. ; Mitberg, Eduard B. ; Mordkovich, Vladimir Z.</creator><creatorcontrib>Karaeva, Aida R. ; Urvanov, Sergey A. ; Kazennov, Nikita V. ; Mitberg, Eduard B. ; Mordkovich, Vladimir Z.</creatorcontrib><description>The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene catalyst Fe(C5H5)(2). The formation of very long (up to several mu m) straight monocrystal metal kernels inside the carbon nanotubes was the most interesting effect. The use of trimetal catalysts (Fe1-x-yCoxNiy)(C5H5)(2) resulted in the sharp increase in the yield of carbon nanotubes. The electrical conductivity of the produced nanotubes is determined by the nature of the catalyst. The variation of individual metals in the Ni-Co-Fe leads to a drop of the electrical resistivity of nanotube samples by the order of magnitude, i.e., from 1.0 x 10(-3) to 1.1 x 10(-5) ohm center dot m. A controlled change in the electrophysical properties of the nanotubes can make it possible to expand their use as fillers in composites, photothermal and tunable magnetic nanomaterials with pre-designed electrical conductivity and other electromagnetic properties.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10112279</identifier><identifier>PMID: 33213020</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Aerosols ; Carbon ; Carbon nanotubes ; Catalysts ; Chemical vapor deposition ; Chemistry ; Chemistry, Multidisciplinary ; Cobalt ; Decomposition ; Electrical conductivity ; Electrical resistivity ; Electromagnetic properties ; Ethanol ; Hydrocarbons ; Iron ; Laboratories ; Magnetic properties ; Materials Science ; Materials Science, Multidisciplinary ; metallocene ; Metallocenes ; Metals ; Morphology ; Nanomaterials ; Nanoparticles ; Nanoscience & Nanotechnology ; Nanotechnology ; nanotube ; Nanotubes ; Nickel ; Physical Sciences ; Physics ; Physics, Applied ; Process controls ; Science & Technology ; Science & Technology - Other Topics ; Single crystals ; Sulfur ; Synthesis ; Technology</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-11, Vol.10 (11), p.2279, Article 2279</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000594396000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c385t-442641c6bdd0611ca4248ecb93ca5fe76db808feabf2139c3c84c844d809219f3</citedby><cites>FETCH-LOGICAL-c385t-442641c6bdd0611ca4248ecb93ca5fe76db808feabf2139c3c84c844d809219f3</cites><orcidid>0000-0002-9553-7657</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698528/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698528/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids></links><search><creatorcontrib>Karaeva, Aida R.</creatorcontrib><creatorcontrib>Urvanov, Sergey A.</creatorcontrib><creatorcontrib>Kazennov, Nikita V.</creatorcontrib><creatorcontrib>Mitberg, Eduard B.</creatorcontrib><creatorcontrib>Mordkovich, Vladimir Z.</creatorcontrib><title>Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>NANOMATERIALS-BASEL</addtitle><description>The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene catalyst Fe(C5H5)(2). The formation of very long (up to several mu m) straight monocrystal metal kernels inside the carbon nanotubes was the most interesting effect. The use of trimetal catalysts (Fe1-x-yCoxNiy)(C5H5)(2) resulted in the sharp increase in the yield of carbon nanotubes. The electrical conductivity of the produced nanotubes is determined by the nature of the catalyst. The variation of individual metals in the Ni-Co-Fe leads to a drop of the electrical resistivity of nanotube samples by the order of magnitude, i.e., from 1.0 x 10(-3) to 1.1 x 10(-5) ohm center dot m. A controlled change in the electrophysical properties of the nanotubes can make it possible to expand their use as fillers in composites, photothermal and tunable magnetic nanomaterials with pre-designed electrical conductivity and other electromagnetic properties.</description><subject>Aerosols</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Chemical vapor deposition</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Cobalt</subject><subject>Decomposition</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electromagnetic properties</subject><subject>Ethanol</subject><subject>Hydrocarbons</subject><subject>Iron</subject><subject>Laboratories</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>metallocene</subject><subject>Metallocenes</subject><subject>Metals</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanoscience & Nanotechnology</subject><subject>Nanotechnology</subject><subject>nanotube</subject><subject>Nanotubes</subject><subject>Nickel</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Process controls</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Single crystals</subject><subject>Sulfur</subject><subject>Synthesis</subject><subject>Technology</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNklFrFDEQgBdRbKl98wcEfBHsaZLJ7iYvgiy1HlQFq76GbHa2zbGXnEn25Pz15rxaWp8MgYTJly8zYarqOaOvARR9440PjDLGeaseVcectmohlGKP7-2PqtOUVrQMxUDW8LQ6AuAMKKfH1XS18_kGk0tn5CrH2eY5IjF-IOcT2hydNRP5sj_PbuvyjoSRdCb2wZNP5e0895jIX8cvHEjYYiQXMcwb8n25XJKPmM00BYse07PqyWimhKe360n17f351-7D4vLzxbJ7d7mwJb-8EII3gtmmHwbaMGaN4EKi7RVYU4_YNkMvqRzR9GMpQ1mwUpQpBkkVZ2qEk2p58A7BrPQmurWJOx2M038CIV5rE7OzE2rWwmCYtAjUiKZo6gEAmpGqusQRiuvtwbWZ-zUOpY4czfRA-vDEuxt9Hba6bZSsuSyCl7eCGH7MmLJeu2RxmozHMCfNRQOMUoC2oC_-QVdhjr581Z7iLYOG1oU6O1A2hpQijnfJMKr3XaHvd0XBXx3wn9iHMVmH3uLdldIVtRKgmn1_UFZo-f9057LJLvguzD7Db7sXypw</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Karaeva, Aida R.</creator><creator>Urvanov, Sergey A.</creator><creator>Kazennov, Nikita V.</creator><creator>Mitberg, Eduard B.</creator><creator>Mordkovich, Vladimir Z.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9553-7657</orcidid></search><sort><creationdate>20201117</creationdate><title>Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes</title><author>Karaeva, Aida R. ; Urvanov, Sergey A. ; Kazennov, Nikita V. ; Mitberg, Eduard B. ; Mordkovich, Vladimir Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-442641c6bdd0611ca4248ecb93ca5fe76db808feabf2139c3c84c844d809219f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosols</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Chemical vapor deposition</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Cobalt</topic><topic>Decomposition</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electromagnetic properties</topic><topic>Ethanol</topic><topic>Hydrocarbons</topic><topic>Iron</topic><topic>Laboratories</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>metallocene</topic><topic>Metallocenes</topic><topic>Metals</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanoscience & Nanotechnology</topic><topic>Nanotechnology</topic><topic>nanotube</topic><topic>Nanotubes</topic><topic>Nickel</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Process controls</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Single crystals</topic><topic>Sulfur</topic><topic>Synthesis</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaeva, Aida R.</creatorcontrib><creatorcontrib>Urvanov, Sergey A.</creatorcontrib><creatorcontrib>Kazennov, Nikita V.</creatorcontrib><creatorcontrib>Mitberg, Eduard B.</creatorcontrib><creatorcontrib>Mordkovich, Vladimir Z.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaeva, Aida R.</au><au>Urvanov, Sergey A.</au><au>Kazennov, Nikita V.</au><au>Mitberg, Eduard B.</au><au>Mordkovich, Vladimir Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><stitle>NANOMATERIALS-BASEL</stitle><date>2020-11-17</date><risdate>2020</risdate><volume>10</volume><issue>11</issue><spage>2279</spage><pages>2279-</pages><artnum>2279</artnum><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>The paper reports the synthesis of carbon nanotubes from ethanol over group VIII (Fe, Co, Ni) catalysts derived from corresponding metallocenes. Several unexpected cooperative effects are reported, which are never observed in the case of individual metallocenes such as the commonly used ferrocene catalyst Fe(C5H5)(2). The formation of very long (up to several mu m) straight monocrystal metal kernels inside the carbon nanotubes was the most interesting effect. The use of trimetal catalysts (Fe1-x-yCoxNiy)(C5H5)(2) resulted in the sharp increase in the yield of carbon nanotubes. The electrical conductivity of the produced nanotubes is determined by the nature of the catalyst. The variation of individual metals in the Ni-Co-Fe leads to a drop of the electrical resistivity of nanotube samples by the order of magnitude, i.e., from 1.0 x 10(-3) to 1.1 x 10(-5) ohm center dot m. A controlled change in the electrophysical properties of the nanotubes can make it possible to expand their use as fillers in composites, photothermal and tunable magnetic nanomaterials with pre-designed electrical conductivity and other electromagnetic properties.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33213020</pmid><doi>10.3390/nano10112279</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9553-7657</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2020-11, Vol.10 (11), p.2279, Article 2279 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_webofscience_primary_000594396000001CitationCount |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Aerosols Carbon Carbon nanotubes Catalysts Chemical vapor deposition Chemistry Chemistry, Multidisciplinary Cobalt Decomposition Electrical conductivity Electrical resistivity Electromagnetic properties Ethanol Hydrocarbons Iron Laboratories Magnetic properties Materials Science Materials Science, Multidisciplinary metallocene Metallocenes Metals Morphology Nanomaterials Nanoparticles Nanoscience & Nanotechnology Nanotechnology nanotube Nanotubes Nickel Physical Sciences Physics Physics, Applied Process controls Science & Technology Science & Technology - Other Topics Single crystals Sulfur Synthesis Technology |
title | Synthesis, Structure and Electrical Resistivity of Carbon Nanotubes Synthesized over Group VIII Metallocenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20Structure%20and%20Electrical%20Resistivity%20of%20Carbon%20Nanotubes%20Synthesized%20over%20Group%20VIII%20Metallocenes&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Karaeva,%20Aida%20R.&rft.date=2020-11-17&rft.volume=10&rft.issue=11&rft.spage=2279&rft.pages=2279-&rft.artnum=2279&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10112279&rft_dat=%3Cproquest_webof%3E2463100337%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462713605&rft_id=info:pmid/33213020&rft_doaj_id=oai_doaj_org_article_173da18ce30a464c85d3336f095da1e3&rfr_iscdi=true |