Indecomposable tilting modules for the blob algebra
The blob algebra is a finite-dimensional quotient of the Hecke algebra of type B which is almost always quasi-hereditary. We construct the indecomposable tilting modules for the blob algebra over a field of characteristic 0 in the doubly critical case. Every indecomposable tilting module of maximal...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 2021-02, Vol.568, p.273-313 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The blob algebra is a finite-dimensional quotient of the Hecke algebra of type B which is almost always quasi-hereditary. We construct the indecomposable tilting modules for the blob algebra over a field of characteristic 0 in the doubly critical case. Every indecomposable tilting module of maximal highest weight is either a projective module or an extension of a simple module by a projective module. Moreover, every indecomposable tilting module is a submodule of an indecomposable tilting module of maximal highest weight. We conclude that the graded Weyl filtration multiplicities of the indecomposable tilting modules in this case are given by inverse Kazhdan–Lusztig polynomials of type A˜1. |
---|---|
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1016/j.jalgebra.2020.09.042 |