Indecomposable tilting modules for the blob algebra

The blob algebra is a finite-dimensional quotient of the Hecke algebra of type B which is almost always quasi-hereditary. We construct the indecomposable tilting modules for the blob algebra over a field of characteristic 0 in the doubly critical case. Every indecomposable tilting module of maximal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2021-02, Vol.568, p.273-313
Hauptverfasser: Hazi, A., Martin, P.P., Parker, A.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The blob algebra is a finite-dimensional quotient of the Hecke algebra of type B which is almost always quasi-hereditary. We construct the indecomposable tilting modules for the blob algebra over a field of characteristic 0 in the doubly critical case. Every indecomposable tilting module of maximal highest weight is either a projective module or an extension of a simple module by a projective module. Moreover, every indecomposable tilting module is a submodule of an indecomposable tilting module of maximal highest weight. We conclude that the graded Weyl filtration multiplicities of the indecomposable tilting modules in this case are given by inverse Kazhdan–Lusztig polynomials of type A˜1.
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2020.09.042