Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion
[Display omitted] •Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by...
Gespeichert in:
Veröffentlicht in: | European polymer journal 2020-12, Vol.141, p.110083, Article 110083 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110083 |
container_title | European polymer journal |
container_volume | 141 |
creator | Zhou, Xiaoping Ding, Chenhui Cheng, Chuyun Liu, Shuwu Duan, Gaigai Xu, Wenhui Liu, Kunming Hou, Haoqing |
description | [Display omitted]
•Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by in-situ strategies.•In-situ strategies enhance the interfacial interaction between rGO and PI fibrous matrix.
High mechanical performance electrospun polymeric nanofibers are highly desired for practical applications, especially as reinforcements for composites. However, most of the electrospun polymeric nanofibers present tensile strength 295 °C, and the 5% thermal decomposition temperature (T5%) > 539 °C. This work would open a new route for the preparation of high performance electrospun nanofibers for composites. |
doi_str_mv | 10.1016/j.eurpolymj.2020.110083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000594239600017CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305720317973</els_id><sourcerecordid>2487166842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-bbbae7df20bdadb25b4236e1b3e310d64d0ec71fe87707a4f3710b15b145b8933</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EEsvCM2CpR5TtOE7i5FitoK1U1AucLf-ZqI42dmoni8o78M54N22vcPLI833zeX4m5DODHQPWXA47XOIUDk_jsCuhzLcMoOVvyIa1ghesq-q3ZAPAqoJDLd6TDykNACB4wzfkz3c0D8o7ow5UeUvnB4xjrqcYJoyzw0RDT_GAZo4hTYunpyg3OouX8fqemjBOIbkZqVc-9E5jTPToFHW-yNfLWT5idL_V7II_Z7y0XrJM8Mdsy-2P5F2vDgk_PZ9b8vPb1x_7m-Lu_vp2f3VXmAq6udBaKxS2L0FbZXVZ66rkDTLNkTOwTWUBjWA9tkKAUFXPBQPNas2qWrcd51tysc7Naz4umGY5hCX6HCnLqhWsado8cUvEqjJ59RSxl1N0o4pPkoE8sZeDfGUvT-zlyj47v6zOX6hDn4xDb_DVneHXXZ7fNbliIqvb_1fv3XwmuQ-Ln7P1arVipnV0GOWz3bqYv0za4P752L_UfbbT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487166842</pqid></control><display><type>article</type><title>Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhou, Xiaoping ; Ding, Chenhui ; Cheng, Chuyun ; Liu, Shuwu ; Duan, Gaigai ; Xu, Wenhui ; Liu, Kunming ; Hou, Haoqing</creator><creatorcontrib>Zhou, Xiaoping ; Ding, Chenhui ; Cheng, Chuyun ; Liu, Shuwu ; Duan, Gaigai ; Xu, Wenhui ; Liu, Kunming ; Hou, Haoqing</creatorcontrib><description>[Display omitted]
•Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by in-situ strategies.•In-situ strategies enhance the interfacial interaction between rGO and PI fibrous matrix.
High mechanical performance electrospun polymeric nanofibers are highly desired for practical applications, especially as reinforcements for composites. However, most of the electrospun polymeric nanofibers present tensile strength < 3 GPa. To overcome such limitation, this work successfully prepared single rGO reinforced polyimide composite nanofiber with tensile strength up to 4.2 GPa (PI/rGO-1.0%) and modulus up to 121 GPa (PI/rGO-1.2%) by applying in-situ polymerization, electrospinning, and in-situ thermal conversion. These mechanical properties are higher than other polymer-based electrospun nanofibers, and 45% and 236% higher than those of neat PI single nanofiber, respectively. The in-situ strategies provide the homogeneous dispersion of rGO in single electrospun nanofibers and enhance the interfacial interaction between rGO and PI. In addition, the PI/rGO composite nanofibers also present excellent thermal stability with glass transition temperature (Tg) > 295 °C, and the 5% thermal decomposition temperature (T5%) > 539 °C. This work would open a new route for the preparation of high performance electrospun nanofibers for composites.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2020.110083</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Composite materials ; Conversion ; Electrospinning ; Glass transition temperature ; Mechanical properties ; Mechanical property ; Nanofibers ; Nanotechnology ; Physical Sciences ; Polyimide ; Polyimide resins ; Polymer Science ; Polymerization ; Science & Technology ; Single nanofiber ; Tensile strength ; Thermal decomposition ; Thermal property ; Thermal stability ; Thermodynamic properties</subject><ispartof>European polymer journal, 2020-12, Vol.141, p.110083, Article 110083</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>60</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000594239600017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c409t-bbbae7df20bdadb25b4236e1b3e310d64d0ec71fe87707a4f3710b15b145b8933</citedby><cites>FETCH-LOGICAL-c409t-bbbae7df20bdadb25b4236e1b3e310d64d0ec71fe87707a4f3710b15b145b8933</cites><orcidid>0000-0003-0322-9559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eurpolymj.2020.110083$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,28257,46004</link.rule.ids></links><search><creatorcontrib>Zhou, Xiaoping</creatorcontrib><creatorcontrib>Ding, Chenhui</creatorcontrib><creatorcontrib>Cheng, Chuyun</creatorcontrib><creatorcontrib>Liu, Shuwu</creatorcontrib><creatorcontrib>Duan, Gaigai</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Liu, Kunming</creatorcontrib><creatorcontrib>Hou, Haoqing</creatorcontrib><title>Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion</title><title>European polymer journal</title><addtitle>EUR POLYM J</addtitle><description>[Display omitted]
•Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by in-situ strategies.•In-situ strategies enhance the interfacial interaction between rGO and PI fibrous matrix.
High mechanical performance electrospun polymeric nanofibers are highly desired for practical applications, especially as reinforcements for composites. However, most of the electrospun polymeric nanofibers present tensile strength < 3 GPa. To overcome such limitation, this work successfully prepared single rGO reinforced polyimide composite nanofiber with tensile strength up to 4.2 GPa (PI/rGO-1.0%) and modulus up to 121 GPa (PI/rGO-1.2%) by applying in-situ polymerization, electrospinning, and in-situ thermal conversion. These mechanical properties are higher than other polymer-based electrospun nanofibers, and 45% and 236% higher than those of neat PI single nanofiber, respectively. The in-situ strategies provide the homogeneous dispersion of rGO in single electrospun nanofibers and enhance the interfacial interaction between rGO and PI. In addition, the PI/rGO composite nanofibers also present excellent thermal stability with glass transition temperature (Tg) > 295 °C, and the 5% thermal decomposition temperature (T5%) > 539 °C. This work would open a new route for the preparation of high performance electrospun nanofibers for composites.</description><subject>Composite materials</subject><subject>Conversion</subject><subject>Electrospinning</subject><subject>Glass transition temperature</subject><subject>Mechanical properties</subject><subject>Mechanical property</subject><subject>Nanofibers</subject><subject>Nanotechnology</subject><subject>Physical Sciences</subject><subject>Polyimide</subject><subject>Polyimide resins</subject><subject>Polymer Science</subject><subject>Polymerization</subject><subject>Science & Technology</subject><subject>Single nanofiber</subject><subject>Tensile strength</subject><subject>Thermal decomposition</subject><subject>Thermal property</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc9u1DAQxi0EEsvCM2CpR5TtOE7i5FitoK1U1AucLf-ZqI42dmoni8o78M54N22vcPLI833zeX4m5DODHQPWXA47XOIUDk_jsCuhzLcMoOVvyIa1ghesq-q3ZAPAqoJDLd6TDykNACB4wzfkz3c0D8o7ow5UeUvnB4xjrqcYJoyzw0RDT_GAZo4hTYunpyg3OouX8fqemjBOIbkZqVc-9E5jTPToFHW-yNfLWT5idL_V7II_Z7y0XrJM8Mdsy-2P5F2vDgk_PZ9b8vPb1x_7m-Lu_vp2f3VXmAq6udBaKxS2L0FbZXVZ66rkDTLNkTOwTWUBjWA9tkKAUFXPBQPNas2qWrcd51tysc7Naz4umGY5hCX6HCnLqhWsado8cUvEqjJ59RSxl1N0o4pPkoE8sZeDfGUvT-zlyj47v6zOX6hDn4xDb_DVneHXXZ7fNbliIqvb_1fv3XwmuQ-Ln7P1arVipnV0GOWz3bqYv0za4P752L_UfbbT</recordid><startdate>20201205</startdate><enddate>20201205</enddate><creator>Zhou, Xiaoping</creator><creator>Ding, Chenhui</creator><creator>Cheng, Chuyun</creator><creator>Liu, Shuwu</creator><creator>Duan, Gaigai</creator><creator>Xu, Wenhui</creator><creator>Liu, Kunming</creator><creator>Hou, Haoqing</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier BV</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0322-9559</orcidid></search><sort><creationdate>20201205</creationdate><title>Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion</title><author>Zhou, Xiaoping ; Ding, Chenhui ; Cheng, Chuyun ; Liu, Shuwu ; Duan, Gaigai ; Xu, Wenhui ; Liu, Kunming ; Hou, Haoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-bbbae7df20bdadb25b4236e1b3e310d64d0ec71fe87707a4f3710b15b145b8933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Composite materials</topic><topic>Conversion</topic><topic>Electrospinning</topic><topic>Glass transition temperature</topic><topic>Mechanical properties</topic><topic>Mechanical property</topic><topic>Nanofibers</topic><topic>Nanotechnology</topic><topic>Physical Sciences</topic><topic>Polyimide</topic><topic>Polyimide resins</topic><topic>Polymer Science</topic><topic>Polymerization</topic><topic>Science & Technology</topic><topic>Single nanofiber</topic><topic>Tensile strength</topic><topic>Thermal decomposition</topic><topic>Thermal property</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaoping</creatorcontrib><creatorcontrib>Ding, Chenhui</creatorcontrib><creatorcontrib>Cheng, Chuyun</creatorcontrib><creatorcontrib>Liu, Shuwu</creatorcontrib><creatorcontrib>Duan, Gaigai</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Liu, Kunming</creatorcontrib><creatorcontrib>Hou, Haoqing</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiaoping</au><au>Ding, Chenhui</au><au>Cheng, Chuyun</au><au>Liu, Shuwu</au><au>Duan, Gaigai</au><au>Xu, Wenhui</au><au>Liu, Kunming</au><au>Hou, Haoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion</atitle><jtitle>European polymer journal</jtitle><stitle>EUR POLYM J</stitle><date>2020-12-05</date><risdate>2020</risdate><volume>141</volume><spage>110083</spage><pages>110083-</pages><artnum>110083</artnum><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted]
•Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by in-situ strategies.•In-situ strategies enhance the interfacial interaction between rGO and PI fibrous matrix.
High mechanical performance electrospun polymeric nanofibers are highly desired for practical applications, especially as reinforcements for composites. However, most of the electrospun polymeric nanofibers present tensile strength < 3 GPa. To overcome such limitation, this work successfully prepared single rGO reinforced polyimide composite nanofiber with tensile strength up to 4.2 GPa (PI/rGO-1.0%) and modulus up to 121 GPa (PI/rGO-1.2%) by applying in-situ polymerization, electrospinning, and in-situ thermal conversion. These mechanical properties are higher than other polymer-based electrospun nanofibers, and 45% and 236% higher than those of neat PI single nanofiber, respectively. The in-situ strategies provide the homogeneous dispersion of rGO in single electrospun nanofibers and enhance the interfacial interaction between rGO and PI. In addition, the PI/rGO composite nanofibers also present excellent thermal stability with glass transition temperature (Tg) > 295 °C, and the 5% thermal decomposition temperature (T5%) > 539 °C. This work would open a new route for the preparation of high performance electrospun nanofibers for composites.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2020.110083</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0322-9559</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3057 |
ispartof | European polymer journal, 2020-12, Vol.141, p.110083, Article 110083 |
issn | 0014-3057 1873-1945 |
language | eng |
recordid | cdi_webofscience_primary_000594239600017CitationCount |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Composite materials Conversion Electrospinning Glass transition temperature Mechanical properties Mechanical property Nanofibers Nanotechnology Physical Sciences Polyimide Polyimide resins Polymer Science Polymerization Science & Technology Single nanofiber Tensile strength Thermal decomposition Thermal property Thermal stability Thermodynamic properties |
title | Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20thermal%20properties%20of%20electrospun%20polyimide/rGO%20composite%20nanofibers%20via%20in-situ%20polymerization%20and%20in-situ%20thermal%20conversion&rft.jtitle=European%20polymer%20journal&rft.au=Zhou,%20Xiaoping&rft.date=2020-12-05&rft.volume=141&rft.spage=110083&rft.pages=110083-&rft.artnum=110083&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2020.110083&rft_dat=%3Cproquest_webof%3E2487166842%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487166842&rft_id=info:pmid/&rft_els_id=S0014305720317973&rfr_iscdi=true |