Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion

[Display omitted] •Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2020-12, Vol.141, p.110083, Article 110083
Hauptverfasser: Zhou, Xiaoping, Ding, Chenhui, Cheng, Chuyun, Liu, Shuwu, Duan, Gaigai, Xu, Wenhui, Liu, Kunming, Hou, Haoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110083
container_title European polymer journal
container_volume 141
creator Zhou, Xiaoping
Ding, Chenhui
Cheng, Chuyun
Liu, Shuwu
Duan, Gaigai
Xu, Wenhui
Liu, Kunming
Hou, Haoqing
description [Display omitted] •Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by in-situ strategies.•In-situ strategies enhance the interfacial interaction between rGO and PI fibrous matrix. High mechanical performance electrospun polymeric nanofibers are highly desired for practical applications, especially as reinforcements for composites. However, most of the electrospun polymeric nanofibers present tensile strength  295 °C, and the 5% thermal decomposition temperature (T5%) > 539 °C. This work would open a new route for the preparation of high performance electrospun nanofibers for composites.
doi_str_mv 10.1016/j.eurpolymj.2020.110083
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000594239600017CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305720317973</els_id><sourcerecordid>2487166842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-bbbae7df20bdadb25b4236e1b3e310d64d0ec71fe87707a4f3710b15b145b8933</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EEsvCM2CpR5TtOE7i5FitoK1U1AucLf-ZqI42dmoni8o78M54N22vcPLI833zeX4m5DODHQPWXA47XOIUDk_jsCuhzLcMoOVvyIa1ghesq-q3ZAPAqoJDLd6TDykNACB4wzfkz3c0D8o7ow5UeUvnB4xjrqcYJoyzw0RDT_GAZo4hTYunpyg3OouX8fqemjBOIbkZqVc-9E5jTPToFHW-yNfLWT5idL_V7II_Z7y0XrJM8Mdsy-2P5F2vDgk_PZ9b8vPb1x_7m-Lu_vp2f3VXmAq6udBaKxS2L0FbZXVZ66rkDTLNkTOwTWUBjWA9tkKAUFXPBQPNas2qWrcd51tysc7Naz4umGY5hCX6HCnLqhWsado8cUvEqjJ59RSxl1N0o4pPkoE8sZeDfGUvT-zlyj47v6zOX6hDn4xDb_DVneHXXZ7fNbliIqvb_1fv3XwmuQ-Ln7P1arVipnV0GOWz3bqYv0za4P752L_UfbbT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487166842</pqid></control><display><type>article</type><title>Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion</title><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhou, Xiaoping ; Ding, Chenhui ; Cheng, Chuyun ; Liu, Shuwu ; Duan, Gaigai ; Xu, Wenhui ; Liu, Kunming ; Hou, Haoqing</creator><creatorcontrib>Zhou, Xiaoping ; Ding, Chenhui ; Cheng, Chuyun ; Liu, Shuwu ; Duan, Gaigai ; Xu, Wenhui ; Liu, Kunming ; Hou, Haoqing</creatorcontrib><description>[Display omitted] •Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by in-situ strategies.•In-situ strategies enhance the interfacial interaction between rGO and PI fibrous matrix. High mechanical performance electrospun polymeric nanofibers are highly desired for practical applications, especially as reinforcements for composites. However, most of the electrospun polymeric nanofibers present tensile strength &lt; 3 GPa. To overcome such limitation, this work successfully prepared single rGO reinforced polyimide composite nanofiber with tensile strength up to 4.2 GPa (PI/rGO-1.0%) and modulus up to 121 GPa (PI/rGO-1.2%) by applying in-situ polymerization, electrospinning, and in-situ thermal conversion. These mechanical properties are higher than other polymer-based electrospun nanofibers, and 45% and 236% higher than those of neat PI single nanofiber, respectively. The in-situ strategies provide the homogeneous dispersion of rGO in single electrospun nanofibers and enhance the interfacial interaction between rGO and PI. In addition, the PI/rGO composite nanofibers also present excellent thermal stability with glass transition temperature (Tg) &gt; 295 °C, and the 5% thermal decomposition temperature (T5%) &gt; 539 °C. This work would open a new route for the preparation of high performance electrospun nanofibers for composites.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2020.110083</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Composite materials ; Conversion ; Electrospinning ; Glass transition temperature ; Mechanical properties ; Mechanical property ; Nanofibers ; Nanotechnology ; Physical Sciences ; Polyimide ; Polyimide resins ; Polymer Science ; Polymerization ; Science &amp; Technology ; Single nanofiber ; Tensile strength ; Thermal decomposition ; Thermal property ; Thermal stability ; Thermodynamic properties</subject><ispartof>European polymer journal, 2020-12, Vol.141, p.110083, Article 110083</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 5, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>60</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000594239600017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c409t-bbbae7df20bdadb25b4236e1b3e310d64d0ec71fe87707a4f3710b15b145b8933</citedby><cites>FETCH-LOGICAL-c409t-bbbae7df20bdadb25b4236e1b3e310d64d0ec71fe87707a4f3710b15b145b8933</cites><orcidid>0000-0003-0322-9559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eurpolymj.2020.110083$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,28257,46004</link.rule.ids></links><search><creatorcontrib>Zhou, Xiaoping</creatorcontrib><creatorcontrib>Ding, Chenhui</creatorcontrib><creatorcontrib>Cheng, Chuyun</creatorcontrib><creatorcontrib>Liu, Shuwu</creatorcontrib><creatorcontrib>Duan, Gaigai</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Liu, Kunming</creatorcontrib><creatorcontrib>Hou, Haoqing</creatorcontrib><title>Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion</title><title>European polymer journal</title><addtitle>EUR POLYM J</addtitle><description>[Display omitted] •Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by in-situ strategies.•In-situ strategies enhance the interfacial interaction between rGO and PI fibrous matrix. High mechanical performance electrospun polymeric nanofibers are highly desired for practical applications, especially as reinforcements for composites. However, most of the electrospun polymeric nanofibers present tensile strength &lt; 3 GPa. To overcome such limitation, this work successfully prepared single rGO reinforced polyimide composite nanofiber with tensile strength up to 4.2 GPa (PI/rGO-1.0%) and modulus up to 121 GPa (PI/rGO-1.2%) by applying in-situ polymerization, electrospinning, and in-situ thermal conversion. These mechanical properties are higher than other polymer-based electrospun nanofibers, and 45% and 236% higher than those of neat PI single nanofiber, respectively. The in-situ strategies provide the homogeneous dispersion of rGO in single electrospun nanofibers and enhance the interfacial interaction between rGO and PI. In addition, the PI/rGO composite nanofibers also present excellent thermal stability with glass transition temperature (Tg) &gt; 295 °C, and the 5% thermal decomposition temperature (T5%) &gt; 539 °C. This work would open a new route for the preparation of high performance electrospun nanofibers for composites.</description><subject>Composite materials</subject><subject>Conversion</subject><subject>Electrospinning</subject><subject>Glass transition temperature</subject><subject>Mechanical properties</subject><subject>Mechanical property</subject><subject>Nanofibers</subject><subject>Nanotechnology</subject><subject>Physical Sciences</subject><subject>Polyimide</subject><subject>Polyimide resins</subject><subject>Polymer Science</subject><subject>Polymerization</subject><subject>Science &amp; Technology</subject><subject>Single nanofiber</subject><subject>Tensile strength</subject><subject>Thermal decomposition</subject><subject>Thermal property</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc9u1DAQxi0EEsvCM2CpR5TtOE7i5FitoK1U1AucLf-ZqI42dmoni8o78M54N22vcPLI833zeX4m5DODHQPWXA47XOIUDk_jsCuhzLcMoOVvyIa1ghesq-q3ZAPAqoJDLd6TDykNACB4wzfkz3c0D8o7ow5UeUvnB4xjrqcYJoyzw0RDT_GAZo4hTYunpyg3OouX8fqemjBOIbkZqVc-9E5jTPToFHW-yNfLWT5idL_V7II_Z7y0XrJM8Mdsy-2P5F2vDgk_PZ9b8vPb1x_7m-Lu_vp2f3VXmAq6udBaKxS2L0FbZXVZ66rkDTLNkTOwTWUBjWA9tkKAUFXPBQPNas2qWrcd51tysc7Naz4umGY5hCX6HCnLqhWsado8cUvEqjJ59RSxl1N0o4pPkoE8sZeDfGUvT-zlyj47v6zOX6hDn4xDb_DVneHXXZ7fNbliIqvb_1fv3XwmuQ-Ln7P1arVipnV0GOWz3bqYv0za4P752L_UfbbT</recordid><startdate>20201205</startdate><enddate>20201205</enddate><creator>Zhou, Xiaoping</creator><creator>Ding, Chenhui</creator><creator>Cheng, Chuyun</creator><creator>Liu, Shuwu</creator><creator>Duan, Gaigai</creator><creator>Xu, Wenhui</creator><creator>Liu, Kunming</creator><creator>Hou, Haoqing</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier BV</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0322-9559</orcidid></search><sort><creationdate>20201205</creationdate><title>Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion</title><author>Zhou, Xiaoping ; Ding, Chenhui ; Cheng, Chuyun ; Liu, Shuwu ; Duan, Gaigai ; Xu, Wenhui ; Liu, Kunming ; Hou, Haoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-bbbae7df20bdadb25b4236e1b3e310d64d0ec71fe87707a4f3710b15b145b8933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Composite materials</topic><topic>Conversion</topic><topic>Electrospinning</topic><topic>Glass transition temperature</topic><topic>Mechanical properties</topic><topic>Mechanical property</topic><topic>Nanofibers</topic><topic>Nanotechnology</topic><topic>Physical Sciences</topic><topic>Polyimide</topic><topic>Polyimide resins</topic><topic>Polymer Science</topic><topic>Polymerization</topic><topic>Science &amp; Technology</topic><topic>Single nanofiber</topic><topic>Tensile strength</topic><topic>Thermal decomposition</topic><topic>Thermal property</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaoping</creatorcontrib><creatorcontrib>Ding, Chenhui</creatorcontrib><creatorcontrib>Cheng, Chuyun</creatorcontrib><creatorcontrib>Liu, Shuwu</creatorcontrib><creatorcontrib>Duan, Gaigai</creatorcontrib><creatorcontrib>Xu, Wenhui</creatorcontrib><creatorcontrib>Liu, Kunming</creatorcontrib><creatorcontrib>Hou, Haoqing</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiaoping</au><au>Ding, Chenhui</au><au>Cheng, Chuyun</au><au>Liu, Shuwu</au><au>Duan, Gaigai</au><au>Xu, Wenhui</au><au>Liu, Kunming</au><au>Hou, Haoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion</atitle><jtitle>European polymer journal</jtitle><stitle>EUR POLYM J</stitle><date>2020-12-05</date><risdate>2020</risdate><volume>141</volume><spage>110083</spage><pages>110083-</pages><artnum>110083</artnum><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted] •Single PI/rGO composite nanofiber by in-situ polymerization and in-situ thermal conversion.•Tensile strength of single nanofiber up to 4.2 GPa (PI/rGO-1.0% single nanofiber).•Modulus of single nanofiber up to 121 GPa (PI/rGO-1.2% single nanofiber).•Homogeneous dispersion of rGO by in-situ strategies.•In-situ strategies enhance the interfacial interaction between rGO and PI fibrous matrix. High mechanical performance electrospun polymeric nanofibers are highly desired for practical applications, especially as reinforcements for composites. However, most of the electrospun polymeric nanofibers present tensile strength &lt; 3 GPa. To overcome such limitation, this work successfully prepared single rGO reinforced polyimide composite nanofiber with tensile strength up to 4.2 GPa (PI/rGO-1.0%) and modulus up to 121 GPa (PI/rGO-1.2%) by applying in-situ polymerization, electrospinning, and in-situ thermal conversion. These mechanical properties are higher than other polymer-based electrospun nanofibers, and 45% and 236% higher than those of neat PI single nanofiber, respectively. The in-situ strategies provide the homogeneous dispersion of rGO in single electrospun nanofibers and enhance the interfacial interaction between rGO and PI. In addition, the PI/rGO composite nanofibers also present excellent thermal stability with glass transition temperature (Tg) &gt; 295 °C, and the 5% thermal decomposition temperature (T5%) &gt; 539 °C. This work would open a new route for the preparation of high performance electrospun nanofibers for composites.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2020.110083</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0322-9559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-3057
ispartof European polymer journal, 2020-12, Vol.141, p.110083, Article 110083
issn 0014-3057
1873-1945
language eng
recordid cdi_webofscience_primary_000594239600017CitationCount
source Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Composite materials
Conversion
Electrospinning
Glass transition temperature
Mechanical properties
Mechanical property
Nanofibers
Nanotechnology
Physical Sciences
Polyimide
Polyimide resins
Polymer Science
Polymerization
Science & Technology
Single nanofiber
Tensile strength
Thermal decomposition
Thermal property
Thermal stability
Thermodynamic properties
title Mechanical and thermal properties of electrospun polyimide/rGO composite nanofibers via in-situ polymerization and in-situ thermal conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20thermal%20properties%20of%20electrospun%20polyimide/rGO%20composite%20nanofibers%20via%20in-situ%20polymerization%20and%20in-situ%20thermal%20conversion&rft.jtitle=European%20polymer%20journal&rft.au=Zhou,%20Xiaoping&rft.date=2020-12-05&rft.volume=141&rft.spage=110083&rft.pages=110083-&rft.artnum=110083&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2020.110083&rft_dat=%3Cproquest_webof%3E2487166842%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487166842&rft_id=info:pmid/&rft_els_id=S0014305720317973&rfr_iscdi=true