The Scissors Effect in Action: The Fox-Flory Relationship between the Glass Transition Temperature of Crosslinked Poly(Methyl Methacrylate) and Mc in Nanophase Separated Poly(Methyl Methacrylate)-l-Polyisobutylene Conetworks
The glass transition temperature (T-g) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox-Flory relationship between T-g and the average molecular weight between crosslinking points (M-c), reported only in one case for polyme...
Gespeichert in:
Veröffentlicht in: | Materials 2020-10, Vol.13 (21), p.4822, Article 4822 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 4822 |
container_title | Materials |
container_volume | 13 |
creator | Pasztor, Szabolcs Becsei, Balint Szarka, Gyorgyi Thomann, Yi Thomann, Ralf Muehlhaupt, Rolf Ivan, Bela |
description | The glass transition temperature (T-g) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox-Flory relationship between T-g and the average molecular weight between crosslinking points (M-c), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two T(g)s were found for the conetworks by DSC. Fox-Flory type dependence between T-g and M-c of the PMMA component (T-g = T-g,T-infinity - K/M-c) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5-20 nm, but the correlation between T-g and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the T-g of PMMA depend exclusively on the M-c in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials. |
doi_str_mv | 10.3390/ma13214822 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000593618300001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548722669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-aae1c3b3f1bb7228bd5ff0d49df5a8b9c6e16be25023fe4a3d96363ddf02fccf3</originalsourceid><addsrcrecordid>eNqNksFu1DAURSMEolXphg9AltgUqkBsJ56YBVIVdQpSCwiGdeQ4z4xbjx1shzZ_y6fgMGUoLBDevCe_4-tr62bZY1y8oJQXLzcCU4LLmpB72T7mnOWYl-X9O_1edhjCZZEWpbgm_GG2lxrCFpjvZ99Xa0CfpA7B-YBOlQIZkbboREbt7Cs0j5fuJl8a5yf0EYyY98NaD6iDeA1gUUzImREhoJUXNugZQCvYDOBFHD0gp1DjXQhG2yvo0QdnpqMLiOvJoLkI6ackC8-QsD26kPP174R1w1qE5A0GkXT-dS43-TzTwXVjnAxYQI2zyZ3zV-FR9kAJE-Dwth5kn5enq-ZNfv7-7G1zcp7LckFiLgRgSTuqcNctCKm7vlKq6Eveq0rUHZcMMOuAVAWhCkpBe84oo32vCqKkVPQge73VHcZuA70EG70w7eD1RvipdUK3f06sXrdf3Ld2wRilFU0CR7cC3n0dIcR2o4MEY4QFN4aWlBUrcVUsyoQ-_Qu9dKO36Xktqco6-WeMJ-r5lpLz53tQOzO4aOfstL-zk-And-3v0F9JScDxFriGzqkgNVgJOyyFq-KU4ZrOOcOJrv-fbnT8marGjTbSH4Dz5kU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548722669</pqid></control><display><type>article</type><title>The Scissors Effect in Action: The Fox-Flory Relationship between the Glass Transition Temperature of Crosslinked Poly(Methyl Methacrylate) and Mc in Nanophase Separated Poly(Methyl Methacrylate)-l-Polyisobutylene Conetworks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pasztor, Szabolcs ; Becsei, Balint ; Szarka, Gyorgyi ; Thomann, Yi ; Thomann, Ralf ; Muehlhaupt, Rolf ; Ivan, Bela</creator><creatorcontrib>Pasztor, Szabolcs ; Becsei, Balint ; Szarka, Gyorgyi ; Thomann, Yi ; Thomann, Ralf ; Muehlhaupt, Rolf ; Ivan, Bela</creatorcontrib><description>The glass transition temperature (T-g) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox-Flory relationship between T-g and the average molecular weight between crosslinking points (M-c), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two T(g)s were found for the conetworks by DSC. Fox-Flory type dependence between T-g and M-c of the PMMA component (T-g = T-g,T-infinity - K/M-c) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5-20 nm, but the correlation between T-g and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the T-g of PMMA depend exclusively on the M-c in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13214822</identifier><identifier>PMID: 33126719</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Chemicals ; Chemistry ; Chemistry, Physical ; Chloride ; Chromatography ; Crosslinking ; Cutting tools ; Domains ; Glass transition temperature ; Materials Science ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering ; Molecular weight ; Morphology ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Polyisobutylene ; Polymerization ; Polymers ; Polymethyl methacrylate ; Science & Technology ; Spectrum analysis ; Technology</subject><ispartof>Materials, 2020-10, Vol.13 (21), p.4822, Article 4822</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000593618300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c472t-aae1c3b3f1bb7228bd5ff0d49df5a8b9c6e16be25023fe4a3d96363ddf02fccf3</citedby><cites>FETCH-LOGICAL-c472t-aae1c3b3f1bb7228bd5ff0d49df5a8b9c6e16be25023fe4a3d96363ddf02fccf3</cites><orcidid>0000-0002-3597-6965 ; 0000-0003-2475-6841 ; 0000-0001-6082-5061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663353/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663353/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33126719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasztor, Szabolcs</creatorcontrib><creatorcontrib>Becsei, Balint</creatorcontrib><creatorcontrib>Szarka, Gyorgyi</creatorcontrib><creatorcontrib>Thomann, Yi</creatorcontrib><creatorcontrib>Thomann, Ralf</creatorcontrib><creatorcontrib>Muehlhaupt, Rolf</creatorcontrib><creatorcontrib>Ivan, Bela</creatorcontrib><title>The Scissors Effect in Action: The Fox-Flory Relationship between the Glass Transition Temperature of Crosslinked Poly(Methyl Methacrylate) and Mc in Nanophase Separated Poly(Methyl Methacrylate)-l-Polyisobutylene Conetworks</title><title>Materials</title><addtitle>MATERIALS</addtitle><addtitle>Materials (Basel)</addtitle><description>The glass transition temperature (T-g) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox-Flory relationship between T-g and the average molecular weight between crosslinking points (M-c), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two T(g)s were found for the conetworks by DSC. Fox-Flory type dependence between T-g and M-c of the PMMA component (T-g = T-g,T-infinity - K/M-c) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5-20 nm, but the correlation between T-g and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the T-g of PMMA depend exclusively on the M-c in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials.</description><subject>Chemicals</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Chloride</subject><subject>Chromatography</subject><subject>Crosslinking</subject><subject>Cutting tools</subject><subject>Domains</subject><subject>Glass transition temperature</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallurgy & Metallurgical Engineering</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Polyisobutylene</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Science & Technology</subject><subject>Spectrum analysis</subject><subject>Technology</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNksFu1DAURSMEolXphg9AltgUqkBsJ56YBVIVdQpSCwiGdeQ4z4xbjx1shzZ_y6fgMGUoLBDevCe_4-tr62bZY1y8oJQXLzcCU4LLmpB72T7mnOWYl-X9O_1edhjCZZEWpbgm_GG2lxrCFpjvZ99Xa0CfpA7B-YBOlQIZkbboREbt7Cs0j5fuJl8a5yf0EYyY98NaD6iDeA1gUUzImREhoJUXNugZQCvYDOBFHD0gp1DjXQhG2yvo0QdnpqMLiOvJoLkI6ackC8-QsD26kPP174R1w1qE5A0GkXT-dS43-TzTwXVjnAxYQI2zyZ3zV-FR9kAJE-Dwth5kn5enq-ZNfv7-7G1zcp7LckFiLgRgSTuqcNctCKm7vlKq6Eveq0rUHZcMMOuAVAWhCkpBe84oo32vCqKkVPQge73VHcZuA70EG70w7eD1RvipdUK3f06sXrdf3Ld2wRilFU0CR7cC3n0dIcR2o4MEY4QFN4aWlBUrcVUsyoQ-_Qu9dKO36Xktqco6-WeMJ-r5lpLz53tQOzO4aOfstL-zk-And-3v0F9JScDxFriGzqkgNVgJOyyFq-KU4ZrOOcOJrv-fbnT8marGjTbSH4Dz5kU</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Pasztor, Szabolcs</creator><creator>Becsei, Balint</creator><creator>Szarka, Gyorgyi</creator><creator>Thomann, Yi</creator><creator>Thomann, Ralf</creator><creator>Muehlhaupt, Rolf</creator><creator>Ivan, Bela</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3597-6965</orcidid><orcidid>https://orcid.org/0000-0003-2475-6841</orcidid><orcidid>https://orcid.org/0000-0001-6082-5061</orcidid></search><sort><creationdate>20201028</creationdate><title>The Scissors Effect in Action: The Fox-Flory Relationship between the Glass Transition Temperature of Crosslinked Poly(Methyl Methacrylate) and Mc in Nanophase Separated Poly(Methyl Methacrylate)-l-Polyisobutylene Conetworks</title><author>Pasztor, Szabolcs ; Becsei, Balint ; Szarka, Gyorgyi ; Thomann, Yi ; Thomann, Ralf ; Muehlhaupt, Rolf ; Ivan, Bela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-aae1c3b3f1bb7228bd5ff0d49df5a8b9c6e16be25023fe4a3d96363ddf02fccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemicals</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Chloride</topic><topic>Chromatography</topic><topic>Crosslinking</topic><topic>Cutting tools</topic><topic>Domains</topic><topic>Glass transition temperature</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallurgy & Metallurgical Engineering</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Polyisobutylene</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Science & Technology</topic><topic>Spectrum analysis</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasztor, Szabolcs</creatorcontrib><creatorcontrib>Becsei, Balint</creatorcontrib><creatorcontrib>Szarka, Gyorgyi</creatorcontrib><creatorcontrib>Thomann, Yi</creatorcontrib><creatorcontrib>Thomann, Ralf</creatorcontrib><creatorcontrib>Muehlhaupt, Rolf</creatorcontrib><creatorcontrib>Ivan, Bela</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasztor, Szabolcs</au><au>Becsei, Balint</au><au>Szarka, Gyorgyi</au><au>Thomann, Yi</au><au>Thomann, Ralf</au><au>Muehlhaupt, Rolf</au><au>Ivan, Bela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Scissors Effect in Action: The Fox-Flory Relationship between the Glass Transition Temperature of Crosslinked Poly(Methyl Methacrylate) and Mc in Nanophase Separated Poly(Methyl Methacrylate)-l-Polyisobutylene Conetworks</atitle><jtitle>Materials</jtitle><stitle>MATERIALS</stitle><addtitle>Materials (Basel)</addtitle><date>2020-10-28</date><risdate>2020</risdate><volume>13</volume><issue>21</issue><spage>4822</spage><pages>4822-</pages><artnum>4822</artnum><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The glass transition temperature (T-g) is one of the most important properties of polymeric materials. In order to reveal whether the scissors effect, i.e., the Fox-Flory relationship between T-g and the average molecular weight between crosslinking points (M-c), reported only in one case for polymer conetworks so far, is more generally effective or valid only for a single case, a series of poly(methyl methacrylate)-l-polyisobutylene (PMMA-l-PIB) conetworks was prepared and investigated. Two T(g)s were found for the conetworks by DSC. Fox-Flory type dependence between T-g and M-c of the PMMA component (T-g = T-g,T-infinity - K/M-c) was observed. The K constants for the PMMA homopolymer and for the PMMA in the conetworks were the same in the margin of error. AFM images indicated disordered bicontinuous, mutually nanoconfined morphology with average domain sizes of 5-20 nm, but the correlation between T-g and domain sizes was not found. These new results indicate that the macrocrosslinkers act like molecular scissors (scissors effect), and the T-g of PMMA depend exclusively on the M-c in the conetworks. Consequently, these findings mean that the scissors effect is presumably a general phenomenon in nanophase-separated polymer conetworks, and this finding could be utilized in designing, processing, and applications of these novel materials.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33126719</pmid><doi>10.3390/ma13214822</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3597-6965</orcidid><orcidid>https://orcid.org/0000-0003-2475-6841</orcidid><orcidid>https://orcid.org/0000-0001-6082-5061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-10, Vol.13 (21), p.4822, Article 4822 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_webofscience_primary_000593618300001 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Chemicals Chemistry Chemistry, Physical Chloride Chromatography Crosslinking Cutting tools Domains Glass transition temperature Materials Science Materials Science, Multidisciplinary Metallurgy & Metallurgical Engineering Molecular weight Morphology Physical Sciences Physics Physics, Applied Physics, Condensed Matter Polyisobutylene Polymerization Polymers Polymethyl methacrylate Science & Technology Spectrum analysis Technology |
title | The Scissors Effect in Action: The Fox-Flory Relationship between the Glass Transition Temperature of Crosslinked Poly(Methyl Methacrylate) and Mc in Nanophase Separated Poly(Methyl Methacrylate)-l-Polyisobutylene Conetworks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T10%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Scissors%20Effect%20in%20Action:%20The%20Fox-Flory%20Relationship%20between%20the%20Glass%20Transition%20Temperature%20of%20Crosslinked%20Poly(Methyl%20Methacrylate)%20and%20Mc%20in%20Nanophase%20Separated%20Poly(Methyl%20Methacrylate)-l-Polyisobutylene%20Conetworks&rft.jtitle=Materials&rft.au=Pasztor,%20Szabolcs&rft.date=2020-10-28&rft.volume=13&rft.issue=21&rft.spage=4822&rft.pages=4822-&rft.artnum=4822&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13214822&rft_dat=%3Cproquest_webof%3E2548722669%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548722669&rft_id=info:pmid/33126719&rfr_iscdi=true |