Effects of Casting Conditions for Reduced Pressure Test on Melt Quality of Al-Si Alloy

The present study investigated the effect of the casting conditions for the reduced pressure test (RPT) on the melt quality of Al-Si alloy. The casting conditions considered in RPT were the atmospheric exposure during melting, sampling method, and mold pre-heating temperature. Density Index (DI) was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2020-11, Vol.10 (11), p.1422, Article 1422
Hauptverfasser: Jang, Ho Sung, Kang, Ho Jung, Park, Jin Young, Choi, Yoon Suk, Shin, Sunmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study investigated the effect of the casting conditions for the reduced pressure test (RPT) on the melt quality of Al-Si alloy. The casting conditions considered in RPT were the atmospheric exposure during melting, sampling method, and mold pre-heating temperature. Density Index (DI) was measured to quantify the melt quality of the Al-Si alloy casted with the different casting conditions for the RPT. The sample with blocking atmospheric exposure during melting was 5.6% lower in DI than the one without blocking. DI showed a 1.9% gap between scooping-out and pouring sampling methods. Increasing mold pre-heating temperature from 100 degrees C to 250 degrees C increased the DI of the alloy from 8.5% to 18.7%. On the other hand, when the mold pre-heating temperature was 350 degrees C, the DI of the alloy dropped sharply to 0.9%. The melt quality of the alloys was analyzed by measuring the pores and microstructure and simulating the solidification of the samples. It was presumed that the oxides and inclusions in the molten alloys caused the difference in DI according to the atmospheric exposure and the sampling method. The difference in DI according to the mold pre-heating temperature could be understood by calculating the solidification starting time and hydrogen diffusion coefficient during the solidification of the alloys in RPT.
ISSN:2075-4701
2075-4701
DOI:10.3390/met10111422