Differential activating effects of thyrotropin-releasing hormone and its analog taltirelin on motor output to the tongue musculature in vivo

Abstract Thyrotropin-releasing hormone (TRH) is produced by the hypothalamus but most brain TRH is located elsewhere where it acts as a neuromodulator. TRH-positive neurons project to the hypoglossal motoneuron pool where TRH receptor RNA shows a high degree of differential expression compared with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sleep (New York, N.Y.) N.Y.), 2020-09, Vol.43 (9), p.1, Article 053
Hauptverfasser: Liu, Wen-Ying, Liu, Hattie, Aggarwal, Jasmin, Huang, Zhi-Li, Horner, Richard L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1
container_title Sleep (New York, N.Y.)
container_volume 43
creator Liu, Wen-Ying
Liu, Hattie
Aggarwal, Jasmin
Huang, Zhi-Li
Horner, Richard L
description Abstract Thyrotropin-releasing hormone (TRH) is produced by the hypothalamus but most brain TRH is located elsewhere where it acts as a neuromodulator. TRH-positive neurons project to the hypoglossal motoneuron pool where TRH receptor RNA shows a high degree of differential expression compared with the rest of the brain. Strategies to modulate hypoglossal motor activity are of physiological and clinical interest given the potential for pharmacotherapy for obstructive sleep apnea (OSA), a common and serious respiratory disorder. Here, we identified the effects on tongue motor activity of TRH and a specific analog (taltirelin) applied locally to the hypoglossal motoneuron pool and systemically in vivo. Studies were performed under isoflurane anesthesia and across sleep–wake states in rats. In anesthetized rats, microperfusion of TRH (n = 8) or taltirelin (n = 9) into the hypoglossal motoneuron pool caused dose-dependent increases in tonic and phasic tongue motor activity (both p < 0.001). However, the motor responses to TRH were biphasic, being significantly larger “early” in the response versus at the end of the intervention (p ≤ 0.022). In contrast, responses to taltirelin were similar “early” versus “late” (p ≥ 0.107); i.e. once elicited, the motor responses to taltirelin were sustained and maintained. In freely behaving conscious rats (n = 10), microperfusion of 10 μM taltirelin into the hypoglossal motoneuron pool increased tonic and phasic tongue motor activity in non-rapid-eye-movement (REM) sleep (p ≤ 0.038). Intraperitoneal injection of taltirelin (1 mg/kg, n = 16 rats) also increased tonic tongue motor activity across sleep–wake states (p = 0.010). These findings inform the studies in humans to identify the potential beneficial effects of taltirelin for breathing during sleep and OSA.
doi_str_mv 10.1093/sleep/zsaa053
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_webofscience_primary_000593180200014CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A690299044</galeid><oup_id>10.1093/sleep/zsaa053</oup_id><sourcerecordid>A690299044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-10c07a6d6c400bed2533495a638d3263b3eb84f1121b21d5220e0e9790261fab3</originalsourceid><addsrcrecordid>eNqNkkuLFDEUhQtRnHF06VYCbgSpmTwq9dgIQ_uEATe6DqnUre4MVUmZR8v4G_zR3rbbHkcEJYubx3cPyckpiqeMnjPaiYs4ASwX36LWVIp7xSmTkpYdHt0vTimrWdkyKk-KRzFeU1xXnXhYnAjOecNodVp8f23HEQK4ZPVEtEl2q5N1awK4bVIkfiRpcxN8Cn6xrgwwgY47YOPD7B0Q7QZiEdROT35Nkp6SRco64h2ZffKB-JyWnEjyKAVY3DoDmXM0edIpByAIb-3WPy4ejHqK8ORQz4rPb998Wr0vrz6--7C6vCqNZDKVjBra6HqoTUVpDwOXQlSd1LVoB8Fr0Qvo22pkjLOes0FyToFC13SU12zUvTgrXu11l9zPMBh8fdCTWoKddbhRXlt198TZjVr7rWqqtmlbiQIvDgLBf8kQk5ptNDBN2oHPUXHRVi2nUtaIPv8DvfY5oFdIVY1oOtlKdkut9QTKuhH91mYnqi5rvHfX0apC6vwvFI4BZmvwM0aL-3cayn2DCT7GAOPxjYyqXXzUz_ioQ3yQf_a7MUf6V14QeLkHvkLvx2gsOANHjFIqO8FaynHGdnT7__TKJkyedyufXbp12OflH5f-AVD78zY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473795851</pqid></control><display><type>article</type><title>Differential activating effects of thyrotropin-releasing hormone and its analog taltirelin on motor output to the tongue musculature in vivo</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Wen-Ying ; Liu, Hattie ; Aggarwal, Jasmin ; Huang, Zhi-Li ; Horner, Richard L</creator><creatorcontrib>Liu, Wen-Ying ; Liu, Hattie ; Aggarwal, Jasmin ; Huang, Zhi-Li ; Horner, Richard L</creatorcontrib><description>Abstract Thyrotropin-releasing hormone (TRH) is produced by the hypothalamus but most brain TRH is located elsewhere where it acts as a neuromodulator. TRH-positive neurons project to the hypoglossal motoneuron pool where TRH receptor RNA shows a high degree of differential expression compared with the rest of the brain. Strategies to modulate hypoglossal motor activity are of physiological and clinical interest given the potential for pharmacotherapy for obstructive sleep apnea (OSA), a common and serious respiratory disorder. Here, we identified the effects on tongue motor activity of TRH and a specific analog (taltirelin) applied locally to the hypoglossal motoneuron pool and systemically in vivo. Studies were performed under isoflurane anesthesia and across sleep–wake states in rats. In anesthetized rats, microperfusion of TRH (n = 8) or taltirelin (n = 9) into the hypoglossal motoneuron pool caused dose-dependent increases in tonic and phasic tongue motor activity (both p &lt; 0.001). However, the motor responses to TRH were biphasic, being significantly larger “early” in the response versus at the end of the intervention (p ≤ 0.022). In contrast, responses to taltirelin were similar “early” versus “late” (p ≥ 0.107); i.e. once elicited, the motor responses to taltirelin were sustained and maintained. In freely behaving conscious rats (n = 10), microperfusion of 10 μM taltirelin into the hypoglossal motoneuron pool increased tonic and phasic tongue motor activity in non-rapid-eye-movement (REM) sleep (p ≤ 0.038). Intraperitoneal injection of taltirelin (1 mg/kg, n = 16 rats) also increased tonic tongue motor activity across sleep–wake states (p = 0.010). These findings inform the studies in humans to identify the potential beneficial effects of taltirelin for breathing during sleep and OSA.</description><identifier>ISSN: 0161-8105</identifier><identifier>EISSN: 1550-9109</identifier><identifier>DOI: 10.1093/sleep/zsaa053</identifier><identifier>PMID: 32227104</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Animals ; Basic Science of Sleep and Circadian Rhythms ; Clinical Neurology ; Comparative analysis ; Hypoglossal Nerve ; Life Sciences &amp; Biomedicine ; Motor Neurons ; Neurohormones ; Neurosciences ; Neurosciences &amp; Neurology ; Physiological aspects ; Rats ; Rodents ; Science &amp; Technology ; Sleep ; Sleep apnea ; Sleep apnea syndromes ; Sleep Apnea, Obstructive ; Thyrotropin ; Thyrotropin-Releasing Hormone ; Tongue</subject><ispartof>Sleep (New York, N.Y.), 2020-09, Vol.43 (9), p.1, Article 053</ispartof><rights>Sleep Research Society 2020. Published by Oxford University Press [on behalf of the Sleep Research Society]. 2020</rights><rights>Sleep Research Society 2020. Published by Oxford University Press [on behalf of the Sleep Research Society].</rights><rights>COPYRIGHT 2020 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000593180200014</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c515t-10c07a6d6c400bed2533495a638d3263b3eb84f1121b21d5220e0e9790261fab3</citedby><cites>FETCH-LOGICAL-c515t-10c07a6d6c400bed2533495a638d3263b3eb84f1121b21d5220e0e9790261fab3</cites><orcidid>0000-0002-5593-2548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,1585,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32227104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wen-Ying</creatorcontrib><creatorcontrib>Liu, Hattie</creatorcontrib><creatorcontrib>Aggarwal, Jasmin</creatorcontrib><creatorcontrib>Huang, Zhi-Li</creatorcontrib><creatorcontrib>Horner, Richard L</creatorcontrib><title>Differential activating effects of thyrotropin-releasing hormone and its analog taltirelin on motor output to the tongue musculature in vivo</title><title>Sleep (New York, N.Y.)</title><addtitle>SLEEP</addtitle><addtitle>Sleep</addtitle><description>Abstract Thyrotropin-releasing hormone (TRH) is produced by the hypothalamus but most brain TRH is located elsewhere where it acts as a neuromodulator. TRH-positive neurons project to the hypoglossal motoneuron pool where TRH receptor RNA shows a high degree of differential expression compared with the rest of the brain. Strategies to modulate hypoglossal motor activity are of physiological and clinical interest given the potential for pharmacotherapy for obstructive sleep apnea (OSA), a common and serious respiratory disorder. Here, we identified the effects on tongue motor activity of TRH and a specific analog (taltirelin) applied locally to the hypoglossal motoneuron pool and systemically in vivo. Studies were performed under isoflurane anesthesia and across sleep–wake states in rats. In anesthetized rats, microperfusion of TRH (n = 8) or taltirelin (n = 9) into the hypoglossal motoneuron pool caused dose-dependent increases in tonic and phasic tongue motor activity (both p &lt; 0.001). However, the motor responses to TRH were biphasic, being significantly larger “early” in the response versus at the end of the intervention (p ≤ 0.022). In contrast, responses to taltirelin were similar “early” versus “late” (p ≥ 0.107); i.e. once elicited, the motor responses to taltirelin were sustained and maintained. In freely behaving conscious rats (n = 10), microperfusion of 10 μM taltirelin into the hypoglossal motoneuron pool increased tonic and phasic tongue motor activity in non-rapid-eye-movement (REM) sleep (p ≤ 0.038). Intraperitoneal injection of taltirelin (1 mg/kg, n = 16 rats) also increased tonic tongue motor activity across sleep–wake states (p = 0.010). These findings inform the studies in humans to identify the potential beneficial effects of taltirelin for breathing during sleep and OSA.</description><subject>Animals</subject><subject>Basic Science of Sleep and Circadian Rhythms</subject><subject>Clinical Neurology</subject><subject>Comparative analysis</subject><subject>Hypoglossal Nerve</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Motor Neurons</subject><subject>Neurohormones</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rodents</subject><subject>Science &amp; Technology</subject><subject>Sleep</subject><subject>Sleep apnea</subject><subject>Sleep apnea syndromes</subject><subject>Sleep Apnea, Obstructive</subject><subject>Thyrotropin</subject><subject>Thyrotropin-Releasing Hormone</subject><subject>Tongue</subject><issn>0161-8105</issn><issn>1550-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkkuLFDEUhQtRnHF06VYCbgSpmTwq9dgIQ_uEATe6DqnUre4MVUmZR8v4G_zR3rbbHkcEJYubx3cPyckpiqeMnjPaiYs4ASwX36LWVIp7xSmTkpYdHt0vTimrWdkyKk-KRzFeU1xXnXhYnAjOecNodVp8f23HEQK4ZPVEtEl2q5N1awK4bVIkfiRpcxN8Cn6xrgwwgY47YOPD7B0Q7QZiEdROT35Nkp6SRco64h2ZffKB-JyWnEjyKAVY3DoDmXM0edIpByAIb-3WPy4ejHqK8ORQz4rPb998Wr0vrz6--7C6vCqNZDKVjBra6HqoTUVpDwOXQlSd1LVoB8Fr0Qvo22pkjLOes0FyToFC13SU12zUvTgrXu11l9zPMBh8fdCTWoKddbhRXlt198TZjVr7rWqqtmlbiQIvDgLBf8kQk5ptNDBN2oHPUXHRVi2nUtaIPv8DvfY5oFdIVY1oOtlKdkut9QTKuhH91mYnqi5rvHfX0apC6vwvFI4BZmvwM0aL-3cayn2DCT7GAOPxjYyqXXzUz_ioQ3yQf_a7MUf6V14QeLkHvkLvx2gsOANHjFIqO8FaynHGdnT7__TKJkyedyufXbp12OflH5f-AVD78zY</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Liu, Wen-Ying</creator><creator>Liu, Hattie</creator><creator>Aggarwal, Jasmin</creator><creator>Huang, Zhi-Li</creator><creator>Horner, Richard L</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>TOX</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5593-2548</orcidid></search><sort><creationdate>20200901</creationdate><title>Differential activating effects of thyrotropin-releasing hormone and its analog taltirelin on motor output to the tongue musculature in vivo</title><author>Liu, Wen-Ying ; Liu, Hattie ; Aggarwal, Jasmin ; Huang, Zhi-Li ; Horner, Richard L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-10c07a6d6c400bed2533495a638d3263b3eb84f1121b21d5220e0e9790261fab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Basic Science of Sleep and Circadian Rhythms</topic><topic>Clinical Neurology</topic><topic>Comparative analysis</topic><topic>Hypoglossal Nerve</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Motor Neurons</topic><topic>Neurohormones</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rodents</topic><topic>Science &amp; Technology</topic><topic>Sleep</topic><topic>Sleep apnea</topic><topic>Sleep apnea syndromes</topic><topic>Sleep Apnea, Obstructive</topic><topic>Thyrotropin</topic><topic>Thyrotropin-Releasing Hormone</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wen-Ying</creatorcontrib><creatorcontrib>Liu, Hattie</creatorcontrib><creatorcontrib>Aggarwal, Jasmin</creatorcontrib><creatorcontrib>Huang, Zhi-Li</creatorcontrib><creatorcontrib>Horner, Richard L</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sleep (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wen-Ying</au><au>Liu, Hattie</au><au>Aggarwal, Jasmin</au><au>Huang, Zhi-Li</au><au>Horner, Richard L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential activating effects of thyrotropin-releasing hormone and its analog taltirelin on motor output to the tongue musculature in vivo</atitle><jtitle>Sleep (New York, N.Y.)</jtitle><stitle>SLEEP</stitle><addtitle>Sleep</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>43</volume><issue>9</issue><spage>1</spage><pages>1-</pages><artnum>053</artnum><issn>0161-8105</issn><eissn>1550-9109</eissn><abstract>Abstract Thyrotropin-releasing hormone (TRH) is produced by the hypothalamus but most brain TRH is located elsewhere where it acts as a neuromodulator. TRH-positive neurons project to the hypoglossal motoneuron pool where TRH receptor RNA shows a high degree of differential expression compared with the rest of the brain. Strategies to modulate hypoglossal motor activity are of physiological and clinical interest given the potential for pharmacotherapy for obstructive sleep apnea (OSA), a common and serious respiratory disorder. Here, we identified the effects on tongue motor activity of TRH and a specific analog (taltirelin) applied locally to the hypoglossal motoneuron pool and systemically in vivo. Studies were performed under isoflurane anesthesia and across sleep–wake states in rats. In anesthetized rats, microperfusion of TRH (n = 8) or taltirelin (n = 9) into the hypoglossal motoneuron pool caused dose-dependent increases in tonic and phasic tongue motor activity (both p &lt; 0.001). However, the motor responses to TRH were biphasic, being significantly larger “early” in the response versus at the end of the intervention (p ≤ 0.022). In contrast, responses to taltirelin were similar “early” versus “late” (p ≥ 0.107); i.e. once elicited, the motor responses to taltirelin were sustained and maintained. In freely behaving conscious rats (n = 10), microperfusion of 10 μM taltirelin into the hypoglossal motoneuron pool increased tonic and phasic tongue motor activity in non-rapid-eye-movement (REM) sleep (p ≤ 0.038). Intraperitoneal injection of taltirelin (1 mg/kg, n = 16 rats) also increased tonic tongue motor activity across sleep–wake states (p = 0.010). These findings inform the studies in humans to identify the potential beneficial effects of taltirelin for breathing during sleep and OSA.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>32227104</pmid><doi>10.1093/sleep/zsaa053</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5593-2548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-8105
ispartof Sleep (New York, N.Y.), 2020-09, Vol.43 (9), p.1, Article 053
issn 0161-8105
1550-9109
language eng
recordid cdi_webofscience_primary_000593180200014CitationCount
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Basic Science of Sleep and Circadian Rhythms
Clinical Neurology
Comparative analysis
Hypoglossal Nerve
Life Sciences & Biomedicine
Motor Neurons
Neurohormones
Neurosciences
Neurosciences & Neurology
Physiological aspects
Rats
Rodents
Science & Technology
Sleep
Sleep apnea
Sleep apnea syndromes
Sleep Apnea, Obstructive
Thyrotropin
Thyrotropin-Releasing Hormone
Tongue
title Differential activating effects of thyrotropin-releasing hormone and its analog taltirelin on motor output to the tongue musculature in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20activating%20effects%20of%20thyrotropin-releasing%20hormone%20and%20its%20analog%20taltirelin%20on%20motor%20output%20to%20the%20tongue%20musculature%20in%20vivo&rft.jtitle=Sleep%20(New%20York,%20N.Y.)&rft.au=Liu,%20Wen-Ying&rft.date=2020-09-01&rft.volume=43&rft.issue=9&rft.spage=1&rft.pages=1-&rft.artnum=053&rft.issn=0161-8105&rft.eissn=1550-9109&rft_id=info:doi/10.1093/sleep/zsaa053&rft_dat=%3Cgale_webof%3EA690299044%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473795851&rft_id=info:pmid/32227104&rft_galeid=A690299044&rft_oup_id=10.1093/sleep/zsaa053&rfr_iscdi=true