Increased activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance and tumor growth in glioblastoma

Abstract Background Glioblastoma is associated with poor prognosis and high mortality. Although the use of first-line temozolomide can reduce tumor growth, therapy-induced stress drives stem cells out of quiescence, leading to chemoresistance and glioblastoma recurrence. The specificity protein 1 (S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2020-10, Vol.22 (10), p.1439-1451
Hauptverfasser: Yang, Wen-Bin, Hsu, Che-Chia, Hsu, Tsung-I, Liou, Jing-Ping, Chang, Kwang-Yu, Chen, Pin-Yuan, Liu, Jr-Jiun, Yang, Shung-Tai, Wang, Jia-Yi, Yeh, Shiu-Hwa, Chen, Ruei-Ming, Chang, Wen-Chang, Chuang, Jian-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1451
container_issue 10
container_start_page 1439
container_title Neuro-oncology (Charlottesville, Va.)
container_volume 22
creator Yang, Wen-Bin
Hsu, Che-Chia
Hsu, Tsung-I
Liou, Jing-Ping
Chang, Kwang-Yu
Chen, Pin-Yuan
Liu, Jr-Jiun
Yang, Shung-Tai
Wang, Jia-Yi
Yeh, Shiu-Hwa
Chen, Ruei-Ming
Chang, Wen-Chang
Chuang, Jian-Ying
description Abstract Background Glioblastoma is associated with poor prognosis and high mortality. Although the use of first-line temozolomide can reduce tumor growth, therapy-induced stress drives stem cells out of quiescence, leading to chemoresistance and glioblastoma recurrence. The specificity protein 1 (Sp1) transcription factor is known to protect glioblastoma cells against temozolomide; however, how tumor cells hijack this factor to gain resistance to therapy is not known. Methods Sp1 acetylation in temozolomide-resistant cells and stemlike tumorspheres was analyzed by immunoprecipitation and immunoblotting experiments. Effects of the histone deacetylase (HDAC)/Sp1 axis on malignant growth were examined using cell proliferation–related assays and in vivo experiments. Furthermore, integrative analysis of gene expression with chromatin immunoprecipitation sequencing and the recurrent glioblastoma omics data were also used to further determine the target genes of the HDAC/Sp1 axis. Results We identified Sp1 as a novel substrate of HDAC6, and observed that the HDAC1/2/6/Sp1 pathway promotes self-renewal of malignancy by upregulating B cell-specific Mo-MLV integration site 1 (BMI1) and human telomerase reverse transcriptase (hTERT), as well as by regulating G2/M progression and DNA repair via alteration of the transcription of various genes. Importantly, HDAC1/2/6/Sp1 activation is associated with poor clinical outcome in both glioblastoma and low-grade gliomas. However, treatment with azaindolyl sulfonamide, a potent HDAC6 inhibitor with partial efficacy against HDAC1/2, induced G2/M arrest and senescence in both temozolomide-resistant cells and stemlike tumorspheres. Conclusion Our study uncovers a previously unknown regulatory mechanism in which the HDAC6/Sp1 axis induces cell division and maintains the stem cell population to fuel tumor growth and therapeutic resistance.
doi_str_mv 10.1093/neuonc/noaa103
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000593120000008CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/neuonc/noaa103</oup_id><sourcerecordid>2394874132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-df76093d2989e3ddb822ef1d55e7f3c7d39b2efae0c560c708f395e3894b1a353</originalsourceid><addsrcrecordid>eNqNkc2P1SAUxRujccbRrUvDUmM6j49C6cZkUj9mkklcqGtC4fY9tIUn0Jn434uvzxddKRsI93cO93Kq6jnBlwR3bONhCd5sfNCaYPagOiecsppLIR4ezrSWnLRn1ZOUvmJMCRfkcXXGKKNSNOK8-nbjTQSdwCJtsrvT2QWPwoiu3171ZEM3Amlv0ac9QYu3ECcHCeUdRL2HJTuDIiSXsvYGDmBe5hDRNob7vEPOo-3kwjDplMOsn1aPRj0leHbcL6ov79997q_r248fbvqr29o0tMm1HVtRRrO0kx0wawdJKYzEcg7tyExrWTeUCw3YcIFNi-XIOg5Mds1ANOPsonqz-u6XYQZrwOeoJ7WPbtbxhwraqb8r3u3UNtyplgvBG1IMXh4NYvi-QMpqdsnANGkPYUmKsq6RbQFpQS9X1MSQUoTx9AzB6ldCak1IHRMqghd_NnfCf0dSALkC9zCEMRkH5W9PGMaYd4xQfFiyd_mQWB8Wn4v09f9LC_1qpcOy_1fXPwF7oL-t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394874132</pqid></control><display><type>article</type><title>Increased activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance and tumor growth in glioblastoma</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Yang, Wen-Bin ; Hsu, Che-Chia ; Hsu, Tsung-I ; Liou, Jing-Ping ; Chang, Kwang-Yu ; Chen, Pin-Yuan ; Liu, Jr-Jiun ; Yang, Shung-Tai ; Wang, Jia-Yi ; Yeh, Shiu-Hwa ; Chen, Ruei-Ming ; Chang, Wen-Chang ; Chuang, Jian-Ying</creator><creatorcontrib>Yang, Wen-Bin ; Hsu, Che-Chia ; Hsu, Tsung-I ; Liou, Jing-Ping ; Chang, Kwang-Yu ; Chen, Pin-Yuan ; Liu, Jr-Jiun ; Yang, Shung-Tai ; Wang, Jia-Yi ; Yeh, Shiu-Hwa ; Chen, Ruei-Ming ; Chang, Wen-Chang ; Chuang, Jian-Ying</creatorcontrib><description>Abstract Background Glioblastoma is associated with poor prognosis and high mortality. Although the use of first-line temozolomide can reduce tumor growth, therapy-induced stress drives stem cells out of quiescence, leading to chemoresistance and glioblastoma recurrence. The specificity protein 1 (Sp1) transcription factor is known to protect glioblastoma cells against temozolomide; however, how tumor cells hijack this factor to gain resistance to therapy is not known. Methods Sp1 acetylation in temozolomide-resistant cells and stemlike tumorspheres was analyzed by immunoprecipitation and immunoblotting experiments. Effects of the histone deacetylase (HDAC)/Sp1 axis on malignant growth were examined using cell proliferation–related assays and in vivo experiments. Furthermore, integrative analysis of gene expression with chromatin immunoprecipitation sequencing and the recurrent glioblastoma omics data were also used to further determine the target genes of the HDAC/Sp1 axis. Results We identified Sp1 as a novel substrate of HDAC6, and observed that the HDAC1/2/6/Sp1 pathway promotes self-renewal of malignancy by upregulating B cell-specific Mo-MLV integration site 1 (BMI1) and human telomerase reverse transcriptase (hTERT), as well as by regulating G2/M progression and DNA repair via alteration of the transcription of various genes. Importantly, HDAC1/2/6/Sp1 activation is associated with poor clinical outcome in both glioblastoma and low-grade gliomas. However, treatment with azaindolyl sulfonamide, a potent HDAC6 inhibitor with partial efficacy against HDAC1/2, induced G2/M arrest and senescence in both temozolomide-resistant cells and stemlike tumorspheres. Conclusion Our study uncovers a previously unknown regulatory mechanism in which the HDAC6/Sp1 axis induces cell division and maintains the stem cell population to fuel tumor growth and therapeutic resistance.</description><identifier>ISSN: 1522-8517</identifier><identifier>EISSN: 1523-5866</identifier><identifier>DOI: 10.1093/neuonc/noaa103</identifier><identifier>PMID: 32328646</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Apoptosis ; Basic and Translational Investigations ; Cell Line, Tumor ; Clinical Neurology ; Drug Resistance, Neoplasm ; G2 Phase Cell Cycle Checkpoints ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Histone Deacetylase 1 - genetics ; Humans ; Life Sciences &amp; Biomedicine ; Neurosciences &amp; Neurology ; Oncology ; Science &amp; Technology ; Sp1 Transcription Factor - genetics</subject><ispartof>Neuro-oncology (Charlottesville, Va.), 2020-10, Vol.22 (10), p.1439-1451</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>69</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000593120000008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c424t-df76093d2989e3ddb822ef1d55e7f3c7d39b2efae0c560c708f395e3894b1a353</citedby><cites>FETCH-LOGICAL-c424t-df76093d2989e3ddb822ef1d55e7f3c7d39b2efae0c560c708f395e3894b1a353</cites><orcidid>0000-0002-7524-7740 ; 0000-0002-9106-3351 ; 0000-0002-6497-4176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566541/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566541/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,1585,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32328646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Wen-Bin</creatorcontrib><creatorcontrib>Hsu, Che-Chia</creatorcontrib><creatorcontrib>Hsu, Tsung-I</creatorcontrib><creatorcontrib>Liou, Jing-Ping</creatorcontrib><creatorcontrib>Chang, Kwang-Yu</creatorcontrib><creatorcontrib>Chen, Pin-Yuan</creatorcontrib><creatorcontrib>Liu, Jr-Jiun</creatorcontrib><creatorcontrib>Yang, Shung-Tai</creatorcontrib><creatorcontrib>Wang, Jia-Yi</creatorcontrib><creatorcontrib>Yeh, Shiu-Hwa</creatorcontrib><creatorcontrib>Chen, Ruei-Ming</creatorcontrib><creatorcontrib>Chang, Wen-Chang</creatorcontrib><creatorcontrib>Chuang, Jian-Ying</creatorcontrib><title>Increased activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance and tumor growth in glioblastoma</title><title>Neuro-oncology (Charlottesville, Va.)</title><addtitle>NEURO-ONCOLOGY</addtitle><addtitle>Neuro Oncol</addtitle><description>Abstract Background Glioblastoma is associated with poor prognosis and high mortality. Although the use of first-line temozolomide can reduce tumor growth, therapy-induced stress drives stem cells out of quiescence, leading to chemoresistance and glioblastoma recurrence. The specificity protein 1 (Sp1) transcription factor is known to protect glioblastoma cells against temozolomide; however, how tumor cells hijack this factor to gain resistance to therapy is not known. Methods Sp1 acetylation in temozolomide-resistant cells and stemlike tumorspheres was analyzed by immunoprecipitation and immunoblotting experiments. Effects of the histone deacetylase (HDAC)/Sp1 axis on malignant growth were examined using cell proliferation–related assays and in vivo experiments. Furthermore, integrative analysis of gene expression with chromatin immunoprecipitation sequencing and the recurrent glioblastoma omics data were also used to further determine the target genes of the HDAC/Sp1 axis. Results We identified Sp1 as a novel substrate of HDAC6, and observed that the HDAC1/2/6/Sp1 pathway promotes self-renewal of malignancy by upregulating B cell-specific Mo-MLV integration site 1 (BMI1) and human telomerase reverse transcriptase (hTERT), as well as by regulating G2/M progression and DNA repair via alteration of the transcription of various genes. Importantly, HDAC1/2/6/Sp1 activation is associated with poor clinical outcome in both glioblastoma and low-grade gliomas. However, treatment with azaindolyl sulfonamide, a potent HDAC6 inhibitor with partial efficacy against HDAC1/2, induced G2/M arrest and senescence in both temozolomide-resistant cells and stemlike tumorspheres. Conclusion Our study uncovers a previously unknown regulatory mechanism in which the HDAC6/Sp1 axis induces cell division and maintains the stem cell population to fuel tumor growth and therapeutic resistance.</description><subject>Apoptosis</subject><subject>Basic and Translational Investigations</subject><subject>Cell Line, Tumor</subject><subject>Clinical Neurology</subject><subject>Drug Resistance, Neoplasm</subject><subject>G2 Phase Cell Cycle Checkpoints</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Histone Deacetylase 1 - genetics</subject><subject>Humans</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Neurosciences &amp; Neurology</subject><subject>Oncology</subject><subject>Science &amp; Technology</subject><subject>Sp1 Transcription Factor - genetics</subject><issn>1522-8517</issn><issn>1523-5866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc2P1SAUxRujccbRrUvDUmM6j49C6cZkUj9mkklcqGtC4fY9tIUn0Jn434uvzxddKRsI93cO93Kq6jnBlwR3bONhCd5sfNCaYPagOiecsppLIR4ezrSWnLRn1ZOUvmJMCRfkcXXGKKNSNOK8-nbjTQSdwCJtsrvT2QWPwoiu3171ZEM3Amlv0ac9QYu3ECcHCeUdRL2HJTuDIiSXsvYGDmBe5hDRNob7vEPOo-3kwjDplMOsn1aPRj0leHbcL6ov79997q_r248fbvqr29o0tMm1HVtRRrO0kx0wawdJKYzEcg7tyExrWTeUCw3YcIFNi-XIOg5Mds1ANOPsonqz-u6XYQZrwOeoJ7WPbtbxhwraqb8r3u3UNtyplgvBG1IMXh4NYvi-QMpqdsnANGkPYUmKsq6RbQFpQS9X1MSQUoTx9AzB6ldCak1IHRMqghd_NnfCf0dSALkC9zCEMRkH5W9PGMaYd4xQfFiyd_mQWB8Wn4v09f9LC_1qpcOy_1fXPwF7oL-t</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>Yang, Wen-Bin</creator><creator>Hsu, Che-Chia</creator><creator>Hsu, Tsung-I</creator><creator>Liou, Jing-Ping</creator><creator>Chang, Kwang-Yu</creator><creator>Chen, Pin-Yuan</creator><creator>Liu, Jr-Jiun</creator><creator>Yang, Shung-Tai</creator><creator>Wang, Jia-Yi</creator><creator>Yeh, Shiu-Hwa</creator><creator>Chen, Ruei-Ming</creator><creator>Chang, Wen-Chang</creator><creator>Chuang, Jian-Ying</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7524-7740</orcidid><orcidid>https://orcid.org/0000-0002-9106-3351</orcidid><orcidid>https://orcid.org/0000-0002-6497-4176</orcidid></search><sort><creationdate>20201014</creationdate><title>Increased activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance and tumor growth in glioblastoma</title><author>Yang, Wen-Bin ; Hsu, Che-Chia ; Hsu, Tsung-I ; Liou, Jing-Ping ; Chang, Kwang-Yu ; Chen, Pin-Yuan ; Liu, Jr-Jiun ; Yang, Shung-Tai ; Wang, Jia-Yi ; Yeh, Shiu-Hwa ; Chen, Ruei-Ming ; Chang, Wen-Chang ; Chuang, Jian-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-df76093d2989e3ddb822ef1d55e7f3c7d39b2efae0c560c708f395e3894b1a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apoptosis</topic><topic>Basic and Translational Investigations</topic><topic>Cell Line, Tumor</topic><topic>Clinical Neurology</topic><topic>Drug Resistance, Neoplasm</topic><topic>G2 Phase Cell Cycle Checkpoints</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Histone Deacetylase 1 - genetics</topic><topic>Humans</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Neurosciences &amp; Neurology</topic><topic>Oncology</topic><topic>Science &amp; Technology</topic><topic>Sp1 Transcription Factor - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wen-Bin</creatorcontrib><creatorcontrib>Hsu, Che-Chia</creatorcontrib><creatorcontrib>Hsu, Tsung-I</creatorcontrib><creatorcontrib>Liou, Jing-Ping</creatorcontrib><creatorcontrib>Chang, Kwang-Yu</creatorcontrib><creatorcontrib>Chen, Pin-Yuan</creatorcontrib><creatorcontrib>Liu, Jr-Jiun</creatorcontrib><creatorcontrib>Yang, Shung-Tai</creatorcontrib><creatorcontrib>Wang, Jia-Yi</creatorcontrib><creatorcontrib>Yeh, Shiu-Hwa</creatorcontrib><creatorcontrib>Chen, Ruei-Ming</creatorcontrib><creatorcontrib>Chang, Wen-Chang</creatorcontrib><creatorcontrib>Chuang, Jian-Ying</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wen-Bin</au><au>Hsu, Che-Chia</au><au>Hsu, Tsung-I</au><au>Liou, Jing-Ping</au><au>Chang, Kwang-Yu</au><au>Chen, Pin-Yuan</au><au>Liu, Jr-Jiun</au><au>Yang, Shung-Tai</au><au>Wang, Jia-Yi</au><au>Yeh, Shiu-Hwa</au><au>Chen, Ruei-Ming</au><au>Chang, Wen-Chang</au><au>Chuang, Jian-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance and tumor growth in glioblastoma</atitle><jtitle>Neuro-oncology (Charlottesville, Va.)</jtitle><stitle>NEURO-ONCOLOGY</stitle><addtitle>Neuro Oncol</addtitle><date>2020-10-14</date><risdate>2020</risdate><volume>22</volume><issue>10</issue><spage>1439</spage><epage>1451</epage><pages>1439-1451</pages><issn>1522-8517</issn><eissn>1523-5866</eissn><abstract>Abstract Background Glioblastoma is associated with poor prognosis and high mortality. Although the use of first-line temozolomide can reduce tumor growth, therapy-induced stress drives stem cells out of quiescence, leading to chemoresistance and glioblastoma recurrence. The specificity protein 1 (Sp1) transcription factor is known to protect glioblastoma cells against temozolomide; however, how tumor cells hijack this factor to gain resistance to therapy is not known. Methods Sp1 acetylation in temozolomide-resistant cells and stemlike tumorspheres was analyzed by immunoprecipitation and immunoblotting experiments. Effects of the histone deacetylase (HDAC)/Sp1 axis on malignant growth were examined using cell proliferation–related assays and in vivo experiments. Furthermore, integrative analysis of gene expression with chromatin immunoprecipitation sequencing and the recurrent glioblastoma omics data were also used to further determine the target genes of the HDAC/Sp1 axis. Results We identified Sp1 as a novel substrate of HDAC6, and observed that the HDAC1/2/6/Sp1 pathway promotes self-renewal of malignancy by upregulating B cell-specific Mo-MLV integration site 1 (BMI1) and human telomerase reverse transcriptase (hTERT), as well as by regulating G2/M progression and DNA repair via alteration of the transcription of various genes. Importantly, HDAC1/2/6/Sp1 activation is associated with poor clinical outcome in both glioblastoma and low-grade gliomas. However, treatment with azaindolyl sulfonamide, a potent HDAC6 inhibitor with partial efficacy against HDAC1/2, induced G2/M arrest and senescence in both temozolomide-resistant cells and stemlike tumorspheres. Conclusion Our study uncovers a previously unknown regulatory mechanism in which the HDAC6/Sp1 axis induces cell division and maintains the stem cell population to fuel tumor growth and therapeutic resistance.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>32328646</pmid><doi>10.1093/neuonc/noaa103</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7524-7740</orcidid><orcidid>https://orcid.org/0000-0002-9106-3351</orcidid><orcidid>https://orcid.org/0000-0002-6497-4176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1522-8517
ispartof Neuro-oncology (Charlottesville, Va.), 2020-10, Vol.22 (10), p.1439-1451
issn 1522-8517
1523-5866
language eng
recordid cdi_webofscience_primary_000593120000008CitationCount
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Apoptosis
Basic and Translational Investigations
Cell Line, Tumor
Clinical Neurology
Drug Resistance, Neoplasm
G2 Phase Cell Cycle Checkpoints
Glioblastoma - drug therapy
Glioblastoma - genetics
Histone Deacetylase 1 - genetics
Humans
Life Sciences & Biomedicine
Neurosciences & Neurology
Oncology
Science & Technology
Sp1 Transcription Factor - genetics
title Increased activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance and tumor growth in glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20activation%20of%20HDAC1/2/6%20and%20Sp1%20underlies%20therapeutic%20resistance%20and%20tumor%20growth%20in%20glioblastoma&rft.jtitle=Neuro-oncology%20(Charlottesville,%20Va.)&rft.au=Yang,%20Wen-Bin&rft.date=2020-10-14&rft.volume=22&rft.issue=10&rft.spage=1439&rft.epage=1451&rft.pages=1439-1451&rft.issn=1522-8517&rft.eissn=1523-5866&rft_id=info:doi/10.1093/neuonc/noaa103&rft_dat=%3Cproquest_webof%3E2394874132%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394874132&rft_id=info:pmid/32328646&rft_oup_id=10.1093/neuonc/noaa103&rfr_iscdi=true