Bioconcentration of Organotin Cations during Molting Inhibits Heterocypris incongruens Growth

The densely populated North Sea region encompasses catchments of rivers such as Scheldt and Meuse. Herein, agricultural, industrial, and household chemicals are emitted, transported by water, and deposited in sediments, posing ecological risks. Though sediment monitoring is often costly and time-int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-11, Vol.54 (22), p.14288-14301
Hauptverfasser: Nolte, Tom M, De Cooman, Ward, Vink, Jos P. M, Elst, Raf, Ryken, Els, Ragas, Ad M. J, Hendriks, A. Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14301
container_issue 22
container_start_page 14288
container_title Environmental science & technology
container_volume 54
creator Nolte, Tom M
De Cooman, Ward
Vink, Jos P. M
Elst, Raf
Ryken, Els
Ragas, Ad M. J
Hendriks, A. Jan
description The densely populated North Sea region encompasses catchments of rivers such as Scheldt and Meuse. Herein, agricultural, industrial, and household chemicals are emitted, transported by water, and deposited in sediments, posing ecological risks. Though sediment monitoring is often costly and time-intensive, modeling its toxicity to biota has received little attention. Due to high complexity of interacting variables that induce overall toxicity, monitoring data only sporadically validates current models. Via a range of concepts, we related bio-physicochemical constituents of sediment in Flanders to results from toxicity bioassays performed on the ostracod Heterocypris incongruens. Depending on the water body, we explain up to 90% of the variance in H. incongruens growth. Though variable across Flanders’ main water bodies, organotin cations and ammonia dominate the observed toxicity according to toxic unit (TU) assessments. Approximately 10% relates to testing conditions/setups, species variabilities, incoherently documented pollutant concentrations, and/or bio-physicochemical sediment properties. We elucidated the influence of organotin cations and ammonia relative to other metal­(oxides) and biocides. Surprisingly, the tributylin cation appeared ∼1000 times more toxic to H. incongruens as compared to “single-substance” bioassays for similar species. We inferred indirect mixture effects between organotin, ammonia, and phosphate. Via chemical speciation calculations, we observed strong physicochemical and biological interactions between phosphate and organotin cations. These interactions enhance bioconcentration and explain the elevated toxicity of organotin cations. Our study aids water managers and policy makers to interpret monitoring data on a mechanistic basis. As sampled sediments differ, future modeling requires more emphasis on characterizing and parametrizing the interactions between bioassay constituents. We envision that this will aid in bridging the gap between testing in the laboratory and field observations.
doi_str_mv 10.1021/acs.est.0c02855
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000592863400016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465807312</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-b4b3c954a9ee16c90eb54fd635a22b4710577ba9c439fc1a8d6c5f2732580a833</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMotlbX7mTApUyb5zw2gg6-QHGj4EZCJs20kTapSUbx35tpa9WF4Coh-e65594DwCGCQwQxGgnph8qHIZQQF4xtgT5iGKasYGgb9CFEJC1J9tQDe96_QAgxgcUu6BGCCKOw7IPnc22lNVKZ4ETQ1iS2Se7dRBgbtEmq5ZtPxq3TZpLc2Vnozhsz1bUOPrlWQTkrPxZO-0SbqDRxrYoFV86-h-k-2GnEzKuD9TkAj5cXD9V1ent_dVOd3aaCsjykNa2JLBkVpVIokyVUNaPNOCNMYFzTHEGW57UoJSVlI5EoxplkDc4JZgUUBSEDcLrSXbT1XI1X08x4dDUX7oNbofnvH6OnfGLfeJ7FrZFO4Hgt4OxrGzfKX2zrTPTMMc1il5wgHKnRipLOeu9Us-mAIO_y4DEP3lWv84gVRz-NbfivACJwsgLeVW0bL7WKWWywmBgrcZERGm8oi3Txf7rSYZleZVsTvht1FjfD_eX7E48buXg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465807312</pqid></control><display><type>article</type><title>Bioconcentration of Organotin Cations during Molting Inhibits Heterocypris incongruens Growth</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Nolte, Tom M ; De Cooman, Ward ; Vink, Jos P. M ; Elst, Raf ; Ryken, Els ; Ragas, Ad M. J ; Hendriks, A. Jan</creator><creatorcontrib>Nolte, Tom M ; De Cooman, Ward ; Vink, Jos P. M ; Elst, Raf ; Ryken, Els ; Ragas, Ad M. J ; Hendriks, A. Jan</creatorcontrib><description>The densely populated North Sea region encompasses catchments of rivers such as Scheldt and Meuse. Herein, agricultural, industrial, and household chemicals are emitted, transported by water, and deposited in sediments, posing ecological risks. Though sediment monitoring is often costly and time-intensive, modeling its toxicity to biota has received little attention. Due to high complexity of interacting variables that induce overall toxicity, monitoring data only sporadically validates current models. Via a range of concepts, we related bio-physicochemical constituents of sediment in Flanders to results from toxicity bioassays performed on the ostracod Heterocypris incongruens. Depending on the water body, we explain up to 90% of the variance in H. incongruens growth. Though variable across Flanders’ main water bodies, organotin cations and ammonia dominate the observed toxicity according to toxic unit (TU) assessments. Approximately 10% relates to testing conditions/setups, species variabilities, incoherently documented pollutant concentrations, and/or bio-physicochemical sediment properties. We elucidated the influence of organotin cations and ammonia relative to other metal­(oxides) and biocides. Surprisingly, the tributylin cation appeared ∼1000 times more toxic to H. incongruens as compared to “single-substance” bioassays for similar species. We inferred indirect mixture effects between organotin, ammonia, and phosphate. Via chemical speciation calculations, we observed strong physicochemical and biological interactions between phosphate and organotin cations. These interactions enhance bioconcentration and explain the elevated toxicity of organotin cations. Our study aids water managers and policy makers to interpret monitoring data on a mechanistic basis. As sampled sediments differ, future modeling requires more emphasis on characterizing and parametrizing the interactions between bioassay constituents. We envision that this will aid in bridging the gap between testing in the laboratory and field observations.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c02855</identifier><identifier>PMID: 33135409</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Agricultural management ; Ammonia ; Animals ; Bioaccumulation ; Bioassays ; Biocides ; Biological magnification ; Biota ; Catchments ; Cations ; Chemical speciation ; Constituents ; Contaminants in Aquatic and Terrestrial Environments ; Crustacea ; Engineering ; Engineering, Environmental ; Environmental Monitoring ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Geologic Sediments ; Heterocypris incongruens ; Household chemicals ; Life Sciences &amp; Biomedicine ; Modelling ; Molting ; Monitoring ; North Sea ; Organotin compounds ; Pollutants ; Population density ; Science &amp; Technology ; Sediments ; Speciation ; Technology ; Toxicity ; Toxicity Tests ; Water bodies ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - toxicity</subject><ispartof>Environmental science &amp; technology, 2020-11, Vol.54 (22), p.14288-14301</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 17, 2020</rights><rights>2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000592863400016</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a457t-b4b3c954a9ee16c90eb54fd635a22b4710577ba9c439fc1a8d6c5f2732580a833</citedby><cites>FETCH-LOGICAL-a457t-b4b3c954a9ee16c90eb54fd635a22b4710577ba9c439fc1a8d6c5f2732580a833</cites><orcidid>0000-0001-8083-0749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c02855$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c02855$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33135409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nolte, Tom M</creatorcontrib><creatorcontrib>De Cooman, Ward</creatorcontrib><creatorcontrib>Vink, Jos P. M</creatorcontrib><creatorcontrib>Elst, Raf</creatorcontrib><creatorcontrib>Ryken, Els</creatorcontrib><creatorcontrib>Ragas, Ad M. J</creatorcontrib><creatorcontrib>Hendriks, A. Jan</creatorcontrib><title>Bioconcentration of Organotin Cations during Molting Inhibits Heterocypris incongruens Growth</title><title>Environmental science &amp; technology</title><addtitle>ENVIRON SCI TECHNOL</addtitle><addtitle>Environ. Sci. Technol</addtitle><description>The densely populated North Sea region encompasses catchments of rivers such as Scheldt and Meuse. Herein, agricultural, industrial, and household chemicals are emitted, transported by water, and deposited in sediments, posing ecological risks. Though sediment monitoring is often costly and time-intensive, modeling its toxicity to biota has received little attention. Due to high complexity of interacting variables that induce overall toxicity, monitoring data only sporadically validates current models. Via a range of concepts, we related bio-physicochemical constituents of sediment in Flanders to results from toxicity bioassays performed on the ostracod Heterocypris incongruens. Depending on the water body, we explain up to 90% of the variance in H. incongruens growth. Though variable across Flanders’ main water bodies, organotin cations and ammonia dominate the observed toxicity according to toxic unit (TU) assessments. Approximately 10% relates to testing conditions/setups, species variabilities, incoherently documented pollutant concentrations, and/or bio-physicochemical sediment properties. We elucidated the influence of organotin cations and ammonia relative to other metal­(oxides) and biocides. Surprisingly, the tributylin cation appeared ∼1000 times more toxic to H. incongruens as compared to “single-substance” bioassays for similar species. We inferred indirect mixture effects between organotin, ammonia, and phosphate. Via chemical speciation calculations, we observed strong physicochemical and biological interactions between phosphate and organotin cations. These interactions enhance bioconcentration and explain the elevated toxicity of organotin cations. Our study aids water managers and policy makers to interpret monitoring data on a mechanistic basis. As sampled sediments differ, future modeling requires more emphasis on characterizing and parametrizing the interactions between bioassay constituents. We envision that this will aid in bridging the gap between testing in the laboratory and field observations.</description><subject>Agricultural management</subject><subject>Ammonia</subject><subject>Animals</subject><subject>Bioaccumulation</subject><subject>Bioassays</subject><subject>Biocides</subject><subject>Biological magnification</subject><subject>Biota</subject><subject>Catchments</subject><subject>Cations</subject><subject>Chemical speciation</subject><subject>Constituents</subject><subject>Contaminants in Aquatic and Terrestrial Environments</subject><subject>Crustacea</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Environmental Monitoring</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Geologic Sediments</subject><subject>Heterocypris incongruens</subject><subject>Household chemicals</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Modelling</subject><subject>Molting</subject><subject>Monitoring</subject><subject>North Sea</subject><subject>Organotin compounds</subject><subject>Pollutants</subject><subject>Population density</subject><subject>Science &amp; Technology</subject><subject>Sediments</subject><subject>Speciation</subject><subject>Technology</subject><subject>Toxicity</subject><subject>Toxicity Tests</subject><subject>Water bodies</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - toxicity</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUtLAzEUhYMotlbX7mTApUyb5zw2gg6-QHGj4EZCJs20kTapSUbx35tpa9WF4Coh-e65594DwCGCQwQxGgnph8qHIZQQF4xtgT5iGKasYGgb9CFEJC1J9tQDe96_QAgxgcUu6BGCCKOw7IPnc22lNVKZ4ETQ1iS2Se7dRBgbtEmq5ZtPxq3TZpLc2Vnozhsz1bUOPrlWQTkrPxZO-0SbqDRxrYoFV86-h-k-2GnEzKuD9TkAj5cXD9V1ent_dVOd3aaCsjykNa2JLBkVpVIokyVUNaPNOCNMYFzTHEGW57UoJSVlI5EoxplkDc4JZgUUBSEDcLrSXbT1XI1X08x4dDUX7oNbofnvH6OnfGLfeJ7FrZFO4Hgt4OxrGzfKX2zrTPTMMc1il5wgHKnRipLOeu9Us-mAIO_y4DEP3lWv84gVRz-NbfivACJwsgLeVW0bL7WKWWywmBgrcZERGm8oi3Txf7rSYZleZVsTvht1FjfD_eX7E48buXg</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Nolte, Tom M</creator><creator>De Cooman, Ward</creator><creator>Vink, Jos P. M</creator><creator>Elst, Raf</creator><creator>Ryken, Els</creator><creator>Ragas, Ad M. J</creator><creator>Hendriks, A. Jan</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8083-0749</orcidid></search><sort><creationdate>20201117</creationdate><title>Bioconcentration of Organotin Cations during Molting Inhibits Heterocypris incongruens Growth</title><author>Nolte, Tom M ; De Cooman, Ward ; Vink, Jos P. M ; Elst, Raf ; Ryken, Els ; Ragas, Ad M. J ; Hendriks, A. Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-b4b3c954a9ee16c90eb54fd635a22b4710577ba9c439fc1a8d6c5f2732580a833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural management</topic><topic>Ammonia</topic><topic>Animals</topic><topic>Bioaccumulation</topic><topic>Bioassays</topic><topic>Biocides</topic><topic>Biological magnification</topic><topic>Biota</topic><topic>Catchments</topic><topic>Cations</topic><topic>Chemical speciation</topic><topic>Constituents</topic><topic>Contaminants in Aquatic and Terrestrial Environments</topic><topic>Crustacea</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Environmental Monitoring</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Geologic Sediments</topic><topic>Heterocypris incongruens</topic><topic>Household chemicals</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Modelling</topic><topic>Molting</topic><topic>Monitoring</topic><topic>North Sea</topic><topic>Organotin compounds</topic><topic>Pollutants</topic><topic>Population density</topic><topic>Science &amp; Technology</topic><topic>Sediments</topic><topic>Speciation</topic><topic>Technology</topic><topic>Toxicity</topic><topic>Toxicity Tests</topic><topic>Water bodies</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nolte, Tom M</creatorcontrib><creatorcontrib>De Cooman, Ward</creatorcontrib><creatorcontrib>Vink, Jos P. M</creatorcontrib><creatorcontrib>Elst, Raf</creatorcontrib><creatorcontrib>Ryken, Els</creatorcontrib><creatorcontrib>Ragas, Ad M. J</creatorcontrib><creatorcontrib>Hendriks, A. Jan</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nolte, Tom M</au><au>De Cooman, Ward</au><au>Vink, Jos P. M</au><au>Elst, Raf</au><au>Ryken, Els</au><au>Ragas, Ad M. J</au><au>Hendriks, A. Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioconcentration of Organotin Cations during Molting Inhibits Heterocypris incongruens Growth</atitle><jtitle>Environmental science &amp; technology</jtitle><stitle>ENVIRON SCI TECHNOL</stitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>54</volume><issue>22</issue><spage>14288</spage><epage>14301</epage><pages>14288-14301</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The densely populated North Sea region encompasses catchments of rivers such as Scheldt and Meuse. Herein, agricultural, industrial, and household chemicals are emitted, transported by water, and deposited in sediments, posing ecological risks. Though sediment monitoring is often costly and time-intensive, modeling its toxicity to biota has received little attention. Due to high complexity of interacting variables that induce overall toxicity, monitoring data only sporadically validates current models. Via a range of concepts, we related bio-physicochemical constituents of sediment in Flanders to results from toxicity bioassays performed on the ostracod Heterocypris incongruens. Depending on the water body, we explain up to 90% of the variance in H. incongruens growth. Though variable across Flanders’ main water bodies, organotin cations and ammonia dominate the observed toxicity according to toxic unit (TU) assessments. Approximately 10% relates to testing conditions/setups, species variabilities, incoherently documented pollutant concentrations, and/or bio-physicochemical sediment properties. We elucidated the influence of organotin cations and ammonia relative to other metal­(oxides) and biocides. Surprisingly, the tributylin cation appeared ∼1000 times more toxic to H. incongruens as compared to “single-substance” bioassays for similar species. We inferred indirect mixture effects between organotin, ammonia, and phosphate. Via chemical speciation calculations, we observed strong physicochemical and biological interactions between phosphate and organotin cations. These interactions enhance bioconcentration and explain the elevated toxicity of organotin cations. Our study aids water managers and policy makers to interpret monitoring data on a mechanistic basis. As sampled sediments differ, future modeling requires more emphasis on characterizing and parametrizing the interactions between bioassay constituents. We envision that this will aid in bridging the gap between testing in the laboratory and field observations.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33135409</pmid><doi>10.1021/acs.est.0c02855</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8083-0749</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-11, Vol.54 (22), p.14288-14301
issn 0013-936X
1520-5851
language eng
recordid cdi_webofscience_primary_000592863400016
source MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Agricultural management
Ammonia
Animals
Bioaccumulation
Bioassays
Biocides
Biological magnification
Biota
Catchments
Cations
Chemical speciation
Constituents
Contaminants in Aquatic and Terrestrial Environments
Crustacea
Engineering
Engineering, Environmental
Environmental Monitoring
Environmental Sciences
Environmental Sciences & Ecology
Geologic Sediments
Heterocypris incongruens
Household chemicals
Life Sciences & Biomedicine
Modelling
Molting
Monitoring
North Sea
Organotin compounds
Pollutants
Population density
Science & Technology
Sediments
Speciation
Technology
Toxicity
Toxicity Tests
Water bodies
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - toxicity
title Bioconcentration of Organotin Cations during Molting Inhibits Heterocypris incongruens Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioconcentration%20of%20Organotin%20Cations%20during%20Molting%20Inhibits%20Heterocypris%20incongruens%20Growth&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Nolte,%20Tom%20M&rft.date=2020-11-17&rft.volume=54&rft.issue=22&rft.spage=14288&rft.epage=14301&rft.pages=14288-14301&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c02855&rft_dat=%3Cproquest_webof%3E2465807312%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465807312&rft_id=info:pmid/33135409&rfr_iscdi=true