Review of approximate equations for the pendulum period
Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integra...
Gespeichert in:
Veröffentlicht in: | European journal of physics 2021-01, Vol.42 (1), p.15005, Article 015005 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15005 |
container_title | European journal of physics |
container_volume | 42 |
creator | Hinrichsen, Peter F |
description | Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integrals, which cannot be expressed in terms of elementary functions, and therefore a wide variety of approximations have been published. These range from simple single-term formulae to more sophisticated equations, which apply to a wider range of amplitudes, to an iterative procedure for calculating the precise period. The published approximations are compared as Taylor series expansions, and graphically to indicate their accuracy and their regions of applicability. |
doi_str_mv | 10.1088/1361-6404/abad10 |
format | Article |
fullrecord | <record><control><sourceid>webofscience_iop_j</sourceid><recordid>TN_cdi_webofscience_primary_000591802000001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000591802000001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-76d2ac3d3d0885751f8ae0075507e9c5b0eceaeb0b5750fbde5fcb44ab64213b3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7ePfaudSdt0maPUnQVFgTRc8nHBLvsNjVpXf33plb2JpjLDMk8w_uEkEsKNxSEWNC8oGnBgC2kkobCEZkdro7JDCjLUxBQnpKzEDYAlArKZqR8xo8G94mziew67z6bnewxwfdB9o1rQ2KdT_o3TDpszbAddrHxjTPn5MTKbcCL3zonr_d3L9VDun5aPVa361RnAvq0LEwmdW5yEzPyklMrJAKUnEOJS80VoEaJClR8BKsMcqsVY1IVLKO5yucEpr3auxA82rrzMaL_qinUo3g9WtajZT2JR0RMyB6Vs0E32Go8YADAl1RABuOhVdP_iFZuaPuIXv0fjdPX03TjunrjBt_Gn_g71zdiyHso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Review of approximate equations for the pendulum period</title><source>IOP Publishing Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Hinrichsen, Peter F</creator><creatorcontrib>Hinrichsen, Peter F</creatorcontrib><description>Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integrals, which cannot be expressed in terms of elementary functions, and therefore a wide variety of approximations have been published. These range from simple single-term formulae to more sophisticated equations, which apply to a wider range of amplitudes, to an iterative procedure for calculating the precise period. The published approximations are compared as Taylor series expansions, and graphically to indicate their accuracy and their regions of applicability.</description><identifier>ISSN: 0143-0807</identifier><identifier>EISSN: 1361-6404</identifier><identifier>DOI: 10.1088/1361-6404/abad10</identifier><identifier>CODEN: EJPHD4</identifier><language>eng</language><publisher>BRISTOL: IOP Publishing</publisher><subject>Education & Educational Research ; Education, Scientific Disciplines ; large amplitude pendulum ; pendulum period approximations ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Science & Technology ; simple and compound pendulum ; Social Sciences</subject><ispartof>European journal of physics, 2021-01, Vol.42 (1), p.15005, Article 015005</ispartof><rights>2020 European Physical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000591802000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c280t-76d2ac3d3d0885751f8ae0075507e9c5b0eceaeb0b5750fbde5fcb44ab64213b3</citedby><cites>FETCH-LOGICAL-c280t-76d2ac3d3d0885751f8ae0075507e9c5b0eceaeb0b5750fbde5fcb44ab64213b3</cites><orcidid>0000-0001-8306-3557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6404/abad10/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27928,27929,39262,53850,53897</link.rule.ids></links><search><creatorcontrib>Hinrichsen, Peter F</creatorcontrib><title>Review of approximate equations for the pendulum period</title><title>European journal of physics</title><addtitle>EJP</addtitle><addtitle>EUR J PHYS</addtitle><addtitle>Eur. J. Phys</addtitle><description>Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integrals, which cannot be expressed in terms of elementary functions, and therefore a wide variety of approximations have been published. These range from simple single-term formulae to more sophisticated equations, which apply to a wider range of amplitudes, to an iterative procedure for calculating the precise period. The published approximations are compared as Taylor series expansions, and graphically to indicate their accuracy and their regions of applicability.</description><subject>Education & Educational Research</subject><subject>Education, Scientific Disciplines</subject><subject>large amplitude pendulum</subject><subject>pendulum period approximations</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Science & Technology</subject><subject>simple and compound pendulum</subject><subject>Social Sciences</subject><issn>0143-0807</issn><issn>1361-6404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LxDAQhoMouK7ePfaudSdt0maPUnQVFgTRc8nHBLvsNjVpXf33plb2JpjLDMk8w_uEkEsKNxSEWNC8oGnBgC2kkobCEZkdro7JDCjLUxBQnpKzEDYAlArKZqR8xo8G94mziew67z6bnewxwfdB9o1rQ2KdT_o3TDpszbAddrHxjTPn5MTKbcCL3zonr_d3L9VDun5aPVa361RnAvq0LEwmdW5yEzPyklMrJAKUnEOJS80VoEaJClR8BKsMcqsVY1IVLKO5yucEpr3auxA82rrzMaL_qinUo3g9WtajZT2JR0RMyB6Vs0E32Go8YADAl1RABuOhVdP_iFZuaPuIXv0fjdPX03TjunrjBt_Gn_g71zdiyHso</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hinrichsen, Peter F</creator><general>IOP Publishing</general><general>Iop Publishing Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8306-3557</orcidid></search><sort><creationdate>20210101</creationdate><title>Review of approximate equations for the pendulum period</title><author>Hinrichsen, Peter F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-76d2ac3d3d0885751f8ae0075507e9c5b0eceaeb0b5750fbde5fcb44ab64213b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Education & Educational Research</topic><topic>Education, Scientific Disciplines</topic><topic>large amplitude pendulum</topic><topic>pendulum period approximations</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Science & Technology</topic><topic>simple and compound pendulum</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinrichsen, Peter F</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>European journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinrichsen, Peter F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of approximate equations for the pendulum period</atitle><jtitle>European journal of physics</jtitle><stitle>EJP</stitle><stitle>EUR J PHYS</stitle><addtitle>Eur. J. Phys</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>42</volume><issue>1</issue><spage>15005</spage><pages>15005-</pages><artnum>015005</artnum><issn>0143-0807</issn><eissn>1361-6404</eissn><coden>EJPHD4</coden><abstract>Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integrals, which cannot be expressed in terms of elementary functions, and therefore a wide variety of approximations have been published. These range from simple single-term formulae to more sophisticated equations, which apply to a wider range of amplitudes, to an iterative procedure for calculating the precise period. The published approximations are compared as Taylor series expansions, and graphically to indicate their accuracy and their regions of applicability.</abstract><cop>BRISTOL</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6404/abad10</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8306-3557</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-0807 |
ispartof | European journal of physics, 2021-01, Vol.42 (1), p.15005, Article 015005 |
issn | 0143-0807 1361-6404 |
language | eng |
recordid | cdi_webofscience_primary_000591802000001 |
source | IOP Publishing Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Education & Educational Research Education, Scientific Disciplines large amplitude pendulum pendulum period approximations Physical Sciences Physics Physics, Multidisciplinary Science & Technology simple and compound pendulum Social Sciences |
title | Review of approximate equations for the pendulum period |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20approximate%20equations%20for%20the%20pendulum%20period&rft.jtitle=European%20journal%20of%20physics&rft.au=Hinrichsen,%20Peter%20F&rft.date=2021-01-01&rft.volume=42&rft.issue=1&rft.spage=15005&rft.pages=15005-&rft.artnum=015005&rft.issn=0143-0807&rft.eissn=1361-6404&rft.coden=EJPHD4&rft_id=info:doi/10.1088/1361-6404/abad10&rft_dat=%3Cwebofscience_iop_j%3E000591802000001%3C/webofscience_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |