Review of approximate equations for the pendulum period

Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of physics 2021-01, Vol.42 (1), p.15005, Article 015005
1. Verfasser: Hinrichsen, Peter F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15005
container_title European journal of physics
container_volume 42
creator Hinrichsen, Peter F
description Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integrals, which cannot be expressed in terms of elementary functions, and therefore a wide variety of approximations have been published. These range from simple single-term formulae to more sophisticated equations, which apply to a wider range of amplitudes, to an iterative procedure for calculating the precise period. The published approximations are compared as Taylor series expansions, and graphically to indicate their accuracy and their regions of applicability.
doi_str_mv 10.1088/1361-6404/abad10
format Article
fullrecord <record><control><sourceid>webofscience_iop_j</sourceid><recordid>TN_cdi_webofscience_primary_000591802000001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000591802000001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-76d2ac3d3d0885751f8ae0075507e9c5b0eceaeb0b5750fbde5fcb44ab64213b3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7ePfaudSdt0maPUnQVFgTRc8nHBLvsNjVpXf33plb2JpjLDMk8w_uEkEsKNxSEWNC8oGnBgC2kkobCEZkdro7JDCjLUxBQnpKzEDYAlArKZqR8xo8G94mziew67z6bnewxwfdB9o1rQ2KdT_o3TDpszbAddrHxjTPn5MTKbcCL3zonr_d3L9VDun5aPVa361RnAvq0LEwmdW5yEzPyklMrJAKUnEOJS80VoEaJClR8BKsMcqsVY1IVLKO5yucEpr3auxA82rrzMaL_qinUo3g9WtajZT2JR0RMyB6Vs0E32Go8YADAl1RABuOhVdP_iFZuaPuIXv0fjdPX03TjunrjBt_Gn_g71zdiyHso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Review of approximate equations for the pendulum period</title><source>IOP Publishing Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Hinrichsen, Peter F</creator><creatorcontrib>Hinrichsen, Peter F</creatorcontrib><description>Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integrals, which cannot be expressed in terms of elementary functions, and therefore a wide variety of approximations have been published. These range from simple single-term formulae to more sophisticated equations, which apply to a wider range of amplitudes, to an iterative procedure for calculating the precise period. The published approximations are compared as Taylor series expansions, and graphically to indicate their accuracy and their regions of applicability.</description><identifier>ISSN: 0143-0807</identifier><identifier>EISSN: 1361-6404</identifier><identifier>DOI: 10.1088/1361-6404/abad10</identifier><identifier>CODEN: EJPHD4</identifier><language>eng</language><publisher>BRISTOL: IOP Publishing</publisher><subject>Education &amp; Educational Research ; Education, Scientific Disciplines ; large amplitude pendulum ; pendulum period approximations ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Science &amp; Technology ; simple and compound pendulum ; Social Sciences</subject><ispartof>European journal of physics, 2021-01, Vol.42 (1), p.15005, Article 015005</ispartof><rights>2020 European Physical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000591802000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c280t-76d2ac3d3d0885751f8ae0075507e9c5b0eceaeb0b5750fbde5fcb44ab64213b3</citedby><cites>FETCH-LOGICAL-c280t-76d2ac3d3d0885751f8ae0075507e9c5b0eceaeb0b5750fbde5fcb44ab64213b3</cites><orcidid>0000-0001-8306-3557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6404/abad10/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27928,27929,39262,53850,53897</link.rule.ids></links><search><creatorcontrib>Hinrichsen, Peter F</creatorcontrib><title>Review of approximate equations for the pendulum period</title><title>European journal of physics</title><addtitle>EJP</addtitle><addtitle>EUR J PHYS</addtitle><addtitle>Eur. J. Phys</addtitle><description>Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integrals, which cannot be expressed in terms of elementary functions, and therefore a wide variety of approximations have been published. These range from simple single-term formulae to more sophisticated equations, which apply to a wider range of amplitudes, to an iterative procedure for calculating the precise period. The published approximations are compared as Taylor series expansions, and graphically to indicate their accuracy and their regions of applicability.</description><subject>Education &amp; Educational Research</subject><subject>Education, Scientific Disciplines</subject><subject>large amplitude pendulum</subject><subject>pendulum period approximations</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Science &amp; Technology</subject><subject>simple and compound pendulum</subject><subject>Social Sciences</subject><issn>0143-0807</issn><issn>1361-6404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1LxDAQhoMouK7ePfaudSdt0maPUnQVFgTRc8nHBLvsNjVpXf33plb2JpjLDMk8w_uEkEsKNxSEWNC8oGnBgC2kkobCEZkdro7JDCjLUxBQnpKzEDYAlArKZqR8xo8G94mziew67z6bnewxwfdB9o1rQ2KdT_o3TDpszbAddrHxjTPn5MTKbcCL3zonr_d3L9VDun5aPVa361RnAvq0LEwmdW5yEzPyklMrJAKUnEOJS80VoEaJClR8BKsMcqsVY1IVLKO5yucEpr3auxA82rrzMaL_qinUo3g9WtajZT2JR0RMyB6Vs0E32Go8YADAl1RABuOhVdP_iFZuaPuIXv0fjdPX03TjunrjBt_Gn_g71zdiyHso</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hinrichsen, Peter F</creator><general>IOP Publishing</general><general>Iop Publishing Ltd</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8306-3557</orcidid></search><sort><creationdate>20210101</creationdate><title>Review of approximate equations for the pendulum period</title><author>Hinrichsen, Peter F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-76d2ac3d3d0885751f8ae0075507e9c5b0eceaeb0b5750fbde5fcb44ab64213b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Education &amp; Educational Research</topic><topic>Education, Scientific Disciplines</topic><topic>large amplitude pendulum</topic><topic>pendulum period approximations</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Science &amp; Technology</topic><topic>simple and compound pendulum</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinrichsen, Peter F</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>European journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinrichsen, Peter F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of approximate equations for the pendulum period</atitle><jtitle>European journal of physics</jtitle><stitle>EJP</stitle><stitle>EUR J PHYS</stitle><addtitle>Eur. J. Phys</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>42</volume><issue>1</issue><spage>15005</spage><pages>15005-</pages><artnum>015005</artnum><issn>0143-0807</issn><eissn>1361-6404</eissn><coden>EJPHD4</coden><abstract>Precision measurements of the pendulum period as a function of the amplitude can now be made with a variety of instruments including MEMs gyro/accelerometers, and thus theoretical expressions are required for comparison. Unfortunately exact solution of the pendulum equation involves elliptic integrals, which cannot be expressed in terms of elementary functions, and therefore a wide variety of approximations have been published. These range from simple single-term formulae to more sophisticated equations, which apply to a wider range of amplitudes, to an iterative procedure for calculating the precise period. The published approximations are compared as Taylor series expansions, and graphically to indicate their accuracy and their regions of applicability.</abstract><cop>BRISTOL</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6404/abad10</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8306-3557</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-0807
ispartof European journal of physics, 2021-01, Vol.42 (1), p.15005, Article 015005
issn 0143-0807
1361-6404
language eng
recordid cdi_webofscience_primary_000591802000001
source IOP Publishing Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Institute of Physics (IOP) Journals - HEAL-Link
subjects Education & Educational Research
Education, Scientific Disciplines
large amplitude pendulum
pendulum period approximations
Physical Sciences
Physics
Physics, Multidisciplinary
Science & Technology
simple and compound pendulum
Social Sciences
title Review of approximate equations for the pendulum period
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20approximate%20equations%20for%20the%20pendulum%20period&rft.jtitle=European%20journal%20of%20physics&rft.au=Hinrichsen,%20Peter%20F&rft.date=2021-01-01&rft.volume=42&rft.issue=1&rft.spage=15005&rft.pages=15005-&rft.artnum=015005&rft.issn=0143-0807&rft.eissn=1361-6404&rft.coden=EJPHD4&rft_id=info:doi/10.1088/1361-6404/abad10&rft_dat=%3Cwebofscience_iop_j%3E000591802000001%3C/webofscience_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true