Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology
Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with l...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Electronics 2020/08/01, Vol.E103.C(8), pp.353-361 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 8 |
container_start_page | 353 |
container_title | IEICE Transactions on Electronics |
container_volume | E103.C |
creator | ARATAKE, Atsushi TSUZUKI, Ken ISHII, Motohaya SAIDA, Takashi GOH, Takashi DOI, Yoshiyuki YAMAZAKI, Hiroshi FUKUMITSU, Takao YAMADA, Takashi MINO, Shinji |
description | Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with low losses for advanced modulation formats. However, the reliability evaluation necessary to implement them in real transmissions has not been reported yet. In terms of reliability characteristics, there are issues originating from the difference in thermal expansion coefficients between silica PLC and LN. To resolve these issues, we propose design guidelines for hybrid modulators to mitigate the degradation induced by the thermal expansion difference. We fabricated several tens of silica-LN dual polarization quadrature phase shift keying (DP-QPSK) modulators based on the design guidelines and evaluated their reliability. The experiment results show that the modules have no degradation after a reliability test based on GR-468, which confirms the validity of the design guidelines for highly reliable silica-LN hybrid modulators. We can apply the guidelines for hybrid modules that realize heterogeneous device integration using materials with different coefficients of thermal expansion. |
doi_str_mv | 10.1587/transele.2019ECP5044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429561880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429561880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-aee7bcf1aa74b0bea199345e0a689a2f62cf30a006bc7a664832ff2c71c10b1d3</originalsourceid><addsrcrecordid>eNpNkE1rGzEQhkVpoG6af5CDoOdNNZL261iMWwecpuTjLEby7FpGXaWSfPC_zxY3JqeZged5B17GrkHcQN2130rCKVOgGymgXy1_10LrD2wBra4rULX6yBaih6bqaqk_sc8574WAToJaMLv24y4c-QMFjzYQf_TBO6w2_pe9V3x9tMlv-V3cHgKWmPhz9tPI11QoxZEmiofM73C-PAZ-OxUaExYfJ_5EbjfFEMfjF3YxYMh09X9esucfq6flutrc_7xdft9UTtdQKiRqrRsAsdVWWELoe6VrEth0PcqhkW5QAoVorGuxaXSn5DBI14IDYWGrLtnXU-5Lin8PlIvZx0Oa5pdGatnXDXSdmCl9olyKOScazEvyfzAdDQjzr03z1qZ51-asPZy0fS440lnCVLyb2bO0AqHM0nRvy7uQM-x2mAxN6hXcwIjN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429561880</pqid></control><display><type>article</type><title>Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology</title><source>J-STAGE Free</source><creator>ARATAKE, Atsushi ; TSUZUKI, Ken ; ISHII, Motohaya ; SAIDA, Takashi ; GOH, Takashi ; DOI, Yoshiyuki ; YAMAZAKI, Hiroshi ; FUKUMITSU, Takao ; YAMADA, Takashi ; MINO, Shinji</creator><creatorcontrib>ARATAKE, Atsushi ; TSUZUKI, Ken ; ISHII, Motohaya ; SAIDA, Takashi ; GOH, Takashi ; DOI, Yoshiyuki ; YAMAZAKI, Hiroshi ; FUKUMITSU, Takao ; YAMADA, Takashi ; MINO, Shinji</creatorcontrib><description>Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with low losses for advanced modulation formats. However, the reliability evaluation necessary to implement them in real transmissions has not been reported yet. In terms of reliability characteristics, there are issues originating from the difference in thermal expansion coefficients between silica PLC and LN. To resolve these issues, we propose design guidelines for hybrid modulators to mitigate the degradation induced by the thermal expansion difference. We fabricated several tens of silica-LN dual polarization quadrature phase shift keying (DP-QPSK) modulators based on the design guidelines and evaluated their reliability. The experiment results show that the modules have no degradation after a reliability test based on GR-468, which confirms the validity of the design guidelines for highly reliable silica-LN hybrid modulators. We can apply the guidelines for hybrid modules that realize heterogeneous device integration using materials with different coefficients of thermal expansion.</description><identifier>ISSN: 0916-8524</identifier><identifier>EISSN: 1745-1353</identifier><identifier>DOI: 10.1587/transele.2019ECP5044</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Degradation ; Guidelines ; hybrid module ; lithium niobate ; Lithium niobates ; modulator ; Modulators ; Modules ; PLC ; Quadrature phase shift keying ; reliability ; Reliability analysis ; Silicon dioxide ; Thermal expansion</subject><ispartof>IEICE Transactions on Electronics, 2020/08/01, Vol.E103.C(8), pp.353-361</ispartof><rights>2020 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-aee7bcf1aa74b0bea199345e0a689a2f62cf30a006bc7a664832ff2c71c10b1d3</citedby><cites>FETCH-LOGICAL-c451t-aee7bcf1aa74b0bea199345e0a689a2f62cf30a006bc7a664832ff2c71c10b1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>ARATAKE, Atsushi</creatorcontrib><creatorcontrib>TSUZUKI, Ken</creatorcontrib><creatorcontrib>ISHII, Motohaya</creatorcontrib><creatorcontrib>SAIDA, Takashi</creatorcontrib><creatorcontrib>GOH, Takashi</creatorcontrib><creatorcontrib>DOI, Yoshiyuki</creatorcontrib><creatorcontrib>YAMAZAKI, Hiroshi</creatorcontrib><creatorcontrib>FUKUMITSU, Takao</creatorcontrib><creatorcontrib>YAMADA, Takashi</creatorcontrib><creatorcontrib>MINO, Shinji</creatorcontrib><title>Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology</title><title>IEICE Transactions on Electronics</title><addtitle>IEICE Trans. Electron.</addtitle><description>Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with low losses for advanced modulation formats. However, the reliability evaluation necessary to implement them in real transmissions has not been reported yet. In terms of reliability characteristics, there are issues originating from the difference in thermal expansion coefficients between silica PLC and LN. To resolve these issues, we propose design guidelines for hybrid modulators to mitigate the degradation induced by the thermal expansion difference. We fabricated several tens of silica-LN dual polarization quadrature phase shift keying (DP-QPSK) modulators based on the design guidelines and evaluated their reliability. The experiment results show that the modules have no degradation after a reliability test based on GR-468, which confirms the validity of the design guidelines for highly reliable silica-LN hybrid modulators. We can apply the guidelines for hybrid modules that realize heterogeneous device integration using materials with different coefficients of thermal expansion.</description><subject>Degradation</subject><subject>Guidelines</subject><subject>hybrid module</subject><subject>lithium niobate</subject><subject>Lithium niobates</subject><subject>modulator</subject><subject>Modulators</subject><subject>Modules</subject><subject>PLC</subject><subject>Quadrature phase shift keying</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>Silicon dioxide</subject><subject>Thermal expansion</subject><issn>0916-8524</issn><issn>1745-1353</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1rGzEQhkVpoG6af5CDoOdNNZL261iMWwecpuTjLEby7FpGXaWSfPC_zxY3JqeZged5B17GrkHcQN2130rCKVOgGymgXy1_10LrD2wBra4rULX6yBaih6bqaqk_sc8574WAToJaMLv24y4c-QMFjzYQf_TBO6w2_pe9V3x9tMlv-V3cHgKWmPhz9tPI11QoxZEmiofM73C-PAZ-OxUaExYfJ_5EbjfFEMfjF3YxYMh09X9esucfq6flutrc_7xdft9UTtdQKiRqrRsAsdVWWELoe6VrEth0PcqhkW5QAoVorGuxaXSn5DBI14IDYWGrLtnXU-5Lin8PlIvZx0Oa5pdGatnXDXSdmCl9olyKOScazEvyfzAdDQjzr03z1qZ51-asPZy0fS440lnCVLyb2bO0AqHM0nRvy7uQM-x2mAxN6hXcwIjN</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>ARATAKE, Atsushi</creator><creator>TSUZUKI, Ken</creator><creator>ISHII, Motohaya</creator><creator>SAIDA, Takashi</creator><creator>GOH, Takashi</creator><creator>DOI, Yoshiyuki</creator><creator>YAMAZAKI, Hiroshi</creator><creator>FUKUMITSU, Takao</creator><creator>YAMADA, Takashi</creator><creator>MINO, Shinji</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200801</creationdate><title>Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology</title><author>ARATAKE, Atsushi ; TSUZUKI, Ken ; ISHII, Motohaya ; SAIDA, Takashi ; GOH, Takashi ; DOI, Yoshiyuki ; YAMAZAKI, Hiroshi ; FUKUMITSU, Takao ; YAMADA, Takashi ; MINO, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-aee7bcf1aa74b0bea199345e0a689a2f62cf30a006bc7a664832ff2c71c10b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Degradation</topic><topic>Guidelines</topic><topic>hybrid module</topic><topic>lithium niobate</topic><topic>Lithium niobates</topic><topic>modulator</topic><topic>Modulators</topic><topic>Modules</topic><topic>PLC</topic><topic>Quadrature phase shift keying</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>Silicon dioxide</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARATAKE, Atsushi</creatorcontrib><creatorcontrib>TSUZUKI, Ken</creatorcontrib><creatorcontrib>ISHII, Motohaya</creatorcontrib><creatorcontrib>SAIDA, Takashi</creatorcontrib><creatorcontrib>GOH, Takashi</creatorcontrib><creatorcontrib>DOI, Yoshiyuki</creatorcontrib><creatorcontrib>YAMAZAKI, Hiroshi</creatorcontrib><creatorcontrib>FUKUMITSU, Takao</creatorcontrib><creatorcontrib>YAMADA, Takashi</creatorcontrib><creatorcontrib>MINO, Shinji</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEICE Transactions on Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARATAKE, Atsushi</au><au>TSUZUKI, Ken</au><au>ISHII, Motohaya</au><au>SAIDA, Takashi</au><au>GOH, Takashi</au><au>DOI, Yoshiyuki</au><au>YAMAZAKI, Hiroshi</au><au>FUKUMITSU, Takao</au><au>YAMADA, Takashi</au><au>MINO, Shinji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology</atitle><jtitle>IEICE Transactions on Electronics</jtitle><addtitle>IEICE Trans. Electron.</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>E103.C</volume><issue>8</issue><spage>353</spage><epage>361</epage><pages>353-361</pages><issn>0916-8524</issn><eissn>1745-1353</eissn><abstract>Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with low losses for advanced modulation formats. However, the reliability evaluation necessary to implement them in real transmissions has not been reported yet. In terms of reliability characteristics, there are issues originating from the difference in thermal expansion coefficients between silica PLC and LN. To resolve these issues, we propose design guidelines for hybrid modulators to mitigate the degradation induced by the thermal expansion difference. We fabricated several tens of silica-LN dual polarization quadrature phase shift keying (DP-QPSK) modulators based on the design guidelines and evaluated their reliability. The experiment results show that the modules have no degradation after a reliability test based on GR-468, which confirms the validity of the design guidelines for highly reliable silica-LN hybrid modulators. We can apply the guidelines for hybrid modules that realize heterogeneous device integration using materials with different coefficients of thermal expansion.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transele.2019ECP5044</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8524 |
ispartof | IEICE Transactions on Electronics, 2020/08/01, Vol.E103.C(8), pp.353-361 |
issn | 0916-8524 1745-1353 |
language | eng |
recordid | cdi_proquest_journals_2429561880 |
source | J-STAGE Free |
subjects | Degradation Guidelines hybrid module lithium niobate Lithium niobates modulator Modulators Modules PLC Quadrature phase shift keying reliability Reliability analysis Silicon dioxide Thermal expansion |
title | Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Reliable%20Silica-LiNbO3%20Hybrid%20Modulator%20Using%20Heterogeneous%20Material%20Integration%20Technology&rft.jtitle=IEICE%20Transactions%20on%20Electronics&rft.au=ARATAKE,%20Atsushi&rft.date=2020-08-01&rft.volume=E103.C&rft.issue=8&rft.spage=353&rft.epage=361&rft.pages=353-361&rft.issn=0916-8524&rft.eissn=1745-1353&rft_id=info:doi/10.1587/transele.2019ECP5044&rft_dat=%3Cproquest_cross%3E2429561880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429561880&rft_id=info:pmid/&rfr_iscdi=true |