Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology

Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Electronics 2020/08/01, Vol.E103.C(8), pp.353-361
Hauptverfasser: ARATAKE, Atsushi, TSUZUKI, Ken, ISHII, Motohaya, SAIDA, Takashi, GOH, Takashi, DOI, Yoshiyuki, YAMAZAKI, Hiroshi, FUKUMITSU, Takao, YAMADA, Takashi, MINO, Shinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue 8
container_start_page 353
container_title IEICE Transactions on Electronics
container_volume E103.C
creator ARATAKE, Atsushi
TSUZUKI, Ken
ISHII, Motohaya
SAIDA, Takashi
GOH, Takashi
DOI, Yoshiyuki
YAMAZAKI, Hiroshi
FUKUMITSU, Takao
YAMADA, Takashi
MINO, Shinji
description Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with low losses for advanced modulation formats. However, the reliability evaluation necessary to implement them in real transmissions has not been reported yet. In terms of reliability characteristics, there are issues originating from the difference in thermal expansion coefficients between silica PLC and LN. To resolve these issues, we propose design guidelines for hybrid modulators to mitigate the degradation induced by the thermal expansion difference. We fabricated several tens of silica-LN dual polarization quadrature phase shift keying (DP-QPSK) modulators based on the design guidelines and evaluated their reliability. The experiment results show that the modules have no degradation after a reliability test based on GR-468, which confirms the validity of the design guidelines for highly reliable silica-LN hybrid modulators. We can apply the guidelines for hybrid modules that realize heterogeneous device integration using materials with different coefficients of thermal expansion.
doi_str_mv 10.1587/transele.2019ECP5044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429561880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429561880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-aee7bcf1aa74b0bea199345e0a689a2f62cf30a006bc7a664832ff2c71c10b1d3</originalsourceid><addsrcrecordid>eNpNkE1rGzEQhkVpoG6af5CDoOdNNZL261iMWwecpuTjLEby7FpGXaWSfPC_zxY3JqeZged5B17GrkHcQN2130rCKVOgGymgXy1_10LrD2wBra4rULX6yBaih6bqaqk_sc8574WAToJaMLv24y4c-QMFjzYQf_TBO6w2_pe9V3x9tMlv-V3cHgKWmPhz9tPI11QoxZEmiofM73C-PAZ-OxUaExYfJ_5EbjfFEMfjF3YxYMh09X9esucfq6flutrc_7xdft9UTtdQKiRqrRsAsdVWWELoe6VrEth0PcqhkW5QAoVorGuxaXSn5DBI14IDYWGrLtnXU-5Lin8PlIvZx0Oa5pdGatnXDXSdmCl9olyKOScazEvyfzAdDQjzr03z1qZ51-asPZy0fS440lnCVLyb2bO0AqHM0nRvy7uQM-x2mAxN6hXcwIjN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429561880</pqid></control><display><type>article</type><title>Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology</title><source>J-STAGE Free</source><creator>ARATAKE, Atsushi ; TSUZUKI, Ken ; ISHII, Motohaya ; SAIDA, Takashi ; GOH, Takashi ; DOI, Yoshiyuki ; YAMAZAKI, Hiroshi ; FUKUMITSU, Takao ; YAMADA, Takashi ; MINO, Shinji</creator><creatorcontrib>ARATAKE, Atsushi ; TSUZUKI, Ken ; ISHII, Motohaya ; SAIDA, Takashi ; GOH, Takashi ; DOI, Yoshiyuki ; YAMAZAKI, Hiroshi ; FUKUMITSU, Takao ; YAMADA, Takashi ; MINO, Shinji</creatorcontrib><description>Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with low losses for advanced modulation formats. However, the reliability evaluation necessary to implement them in real transmissions has not been reported yet. In terms of reliability characteristics, there are issues originating from the difference in thermal expansion coefficients between silica PLC and LN. To resolve these issues, we propose design guidelines for hybrid modulators to mitigate the degradation induced by the thermal expansion difference. We fabricated several tens of silica-LN dual polarization quadrature phase shift keying (DP-QPSK) modulators based on the design guidelines and evaluated their reliability. The experiment results show that the modules have no degradation after a reliability test based on GR-468, which confirms the validity of the design guidelines for highly reliable silica-LN hybrid modulators. We can apply the guidelines for hybrid modules that realize heterogeneous device integration using materials with different coefficients of thermal expansion.</description><identifier>ISSN: 0916-8524</identifier><identifier>EISSN: 1745-1353</identifier><identifier>DOI: 10.1587/transele.2019ECP5044</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Degradation ; Guidelines ; hybrid module ; lithium niobate ; Lithium niobates ; modulator ; Modulators ; Modules ; PLC ; Quadrature phase shift keying ; reliability ; Reliability analysis ; Silicon dioxide ; Thermal expansion</subject><ispartof>IEICE Transactions on Electronics, 2020/08/01, Vol.E103.C(8), pp.353-361</ispartof><rights>2020 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-aee7bcf1aa74b0bea199345e0a689a2f62cf30a006bc7a664832ff2c71c10b1d3</citedby><cites>FETCH-LOGICAL-c451t-aee7bcf1aa74b0bea199345e0a689a2f62cf30a006bc7a664832ff2c71c10b1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>ARATAKE, Atsushi</creatorcontrib><creatorcontrib>TSUZUKI, Ken</creatorcontrib><creatorcontrib>ISHII, Motohaya</creatorcontrib><creatorcontrib>SAIDA, Takashi</creatorcontrib><creatorcontrib>GOH, Takashi</creatorcontrib><creatorcontrib>DOI, Yoshiyuki</creatorcontrib><creatorcontrib>YAMAZAKI, Hiroshi</creatorcontrib><creatorcontrib>FUKUMITSU, Takao</creatorcontrib><creatorcontrib>YAMADA, Takashi</creatorcontrib><creatorcontrib>MINO, Shinji</creatorcontrib><title>Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology</title><title>IEICE Transactions on Electronics</title><addtitle>IEICE Trans. Electron.</addtitle><description>Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with low losses for advanced modulation formats. However, the reliability evaluation necessary to implement them in real transmissions has not been reported yet. In terms of reliability characteristics, there are issues originating from the difference in thermal expansion coefficients between silica PLC and LN. To resolve these issues, we propose design guidelines for hybrid modulators to mitigate the degradation induced by the thermal expansion difference. We fabricated several tens of silica-LN dual polarization quadrature phase shift keying (DP-QPSK) modulators based on the design guidelines and evaluated their reliability. The experiment results show that the modules have no degradation after a reliability test based on GR-468, which confirms the validity of the design guidelines for highly reliable silica-LN hybrid modulators. We can apply the guidelines for hybrid modules that realize heterogeneous device integration using materials with different coefficients of thermal expansion.</description><subject>Degradation</subject><subject>Guidelines</subject><subject>hybrid module</subject><subject>lithium niobate</subject><subject>Lithium niobates</subject><subject>modulator</subject><subject>Modulators</subject><subject>Modules</subject><subject>PLC</subject><subject>Quadrature phase shift keying</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>Silicon dioxide</subject><subject>Thermal expansion</subject><issn>0916-8524</issn><issn>1745-1353</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1rGzEQhkVpoG6af5CDoOdNNZL261iMWwecpuTjLEby7FpGXaWSfPC_zxY3JqeZged5B17GrkHcQN2130rCKVOgGymgXy1_10LrD2wBra4rULX6yBaih6bqaqk_sc8574WAToJaMLv24y4c-QMFjzYQf_TBO6w2_pe9V3x9tMlv-V3cHgKWmPhz9tPI11QoxZEmiofM73C-PAZ-OxUaExYfJ_5EbjfFEMfjF3YxYMh09X9esucfq6flutrc_7xdft9UTtdQKiRqrRsAsdVWWELoe6VrEth0PcqhkW5QAoVorGuxaXSn5DBI14IDYWGrLtnXU-5Lin8PlIvZx0Oa5pdGatnXDXSdmCl9olyKOScazEvyfzAdDQjzr03z1qZ51-asPZy0fS440lnCVLyb2bO0AqHM0nRvy7uQM-x2mAxN6hXcwIjN</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>ARATAKE, Atsushi</creator><creator>TSUZUKI, Ken</creator><creator>ISHII, Motohaya</creator><creator>SAIDA, Takashi</creator><creator>GOH, Takashi</creator><creator>DOI, Yoshiyuki</creator><creator>YAMAZAKI, Hiroshi</creator><creator>FUKUMITSU, Takao</creator><creator>YAMADA, Takashi</creator><creator>MINO, Shinji</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20200801</creationdate><title>Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology</title><author>ARATAKE, Atsushi ; TSUZUKI, Ken ; ISHII, Motohaya ; SAIDA, Takashi ; GOH, Takashi ; DOI, Yoshiyuki ; YAMAZAKI, Hiroshi ; FUKUMITSU, Takao ; YAMADA, Takashi ; MINO, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-aee7bcf1aa74b0bea199345e0a689a2f62cf30a006bc7a664832ff2c71c10b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Degradation</topic><topic>Guidelines</topic><topic>hybrid module</topic><topic>lithium niobate</topic><topic>Lithium niobates</topic><topic>modulator</topic><topic>Modulators</topic><topic>Modules</topic><topic>PLC</topic><topic>Quadrature phase shift keying</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>Silicon dioxide</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARATAKE, Atsushi</creatorcontrib><creatorcontrib>TSUZUKI, Ken</creatorcontrib><creatorcontrib>ISHII, Motohaya</creatorcontrib><creatorcontrib>SAIDA, Takashi</creatorcontrib><creatorcontrib>GOH, Takashi</creatorcontrib><creatorcontrib>DOI, Yoshiyuki</creatorcontrib><creatorcontrib>YAMAZAKI, Hiroshi</creatorcontrib><creatorcontrib>FUKUMITSU, Takao</creatorcontrib><creatorcontrib>YAMADA, Takashi</creatorcontrib><creatorcontrib>MINO, Shinji</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEICE Transactions on Electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARATAKE, Atsushi</au><au>TSUZUKI, Ken</au><au>ISHII, Motohaya</au><au>SAIDA, Takashi</au><au>GOH, Takashi</au><au>DOI, Yoshiyuki</au><au>YAMAZAKI, Hiroshi</au><au>FUKUMITSU, Takao</au><au>YAMADA, Takashi</au><au>MINO, Shinji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology</atitle><jtitle>IEICE Transactions on Electronics</jtitle><addtitle>IEICE Trans. Electron.</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>E103.C</volume><issue>8</issue><spage>353</spage><epage>361</epage><pages>353-361</pages><issn>0916-8524</issn><eissn>1745-1353</eissn><abstract>Silica-LiNbO3 (LN) hybrid modulators have a hybrid configuration of versatile passive silica-based planar lightwave circuits (PLCs) and simple LN phase modulators arrays. By combining the advantages the two components, these hybrid modulators offer large-scale, highly-functionality modulators with low losses for advanced modulation formats. However, the reliability evaluation necessary to implement them in real transmissions has not been reported yet. In terms of reliability characteristics, there are issues originating from the difference in thermal expansion coefficients between silica PLC and LN. To resolve these issues, we propose design guidelines for hybrid modulators to mitigate the degradation induced by the thermal expansion difference. We fabricated several tens of silica-LN dual polarization quadrature phase shift keying (DP-QPSK) modulators based on the design guidelines and evaluated their reliability. The experiment results show that the modules have no degradation after a reliability test based on GR-468, which confirms the validity of the design guidelines for highly reliable silica-LN hybrid modulators. We can apply the guidelines for hybrid modules that realize heterogeneous device integration using materials with different coefficients of thermal expansion.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transele.2019ECP5044</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8524
ispartof IEICE Transactions on Electronics, 2020/08/01, Vol.E103.C(8), pp.353-361
issn 0916-8524
1745-1353
language eng
recordid cdi_proquest_journals_2429561880
source J-STAGE Free
subjects Degradation
Guidelines
hybrid module
lithium niobate
Lithium niobates
modulator
Modulators
Modules
PLC
Quadrature phase shift keying
reliability
Reliability analysis
Silicon dioxide
Thermal expansion
title Highly Reliable Silica-LiNbO3 Hybrid Modulator Using Heterogeneous Material Integration Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Reliable%20Silica-LiNbO3%20Hybrid%20Modulator%20Using%20Heterogeneous%20Material%20Integration%20Technology&rft.jtitle=IEICE%20Transactions%20on%20Electronics&rft.au=ARATAKE,%20Atsushi&rft.date=2020-08-01&rft.volume=E103.C&rft.issue=8&rft.spage=353&rft.epage=361&rft.pages=353-361&rft.issn=0916-8524&rft.eissn=1745-1353&rft_id=info:doi/10.1587/transele.2019ECP5044&rft_dat=%3Cproquest_cross%3E2429561880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429561880&rft_id=info:pmid/&rfr_iscdi=true