Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)
In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (ID...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2020-11, Vol.44 (44), p.19028-19036 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19036 |
---|---|
container_issue | 44 |
container_start_page | 19028 |
container_title | New journal of chemistry |
container_volume | 44 |
creator | Sousa, Gesiane P. de Oliveira, Cristine S. Neto, Erico Teixeira Sigoli, Fernando A. Mazali, Italo O. |
description | In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (IDCs), and samples with an increasing number of IDCs (x = 2, 5 and 8) were obtained. This method allowed control of the SiO2/CeO2 ratio and tailoring of samples with different crystallite sizes (2-4 nm). The (x)CeO2/S15 supports were then decorated with Au NPs through the Deposition-Precipitation (DP) method using NaOH. The DP conditions used along with the pore size limitations from each support allowed control over the Au NP size (4-9 nm). The samples were characterized by N-2 physisorption, XRD, TEM, ICP-OES, XRF, DRS and Raman Spectroscopy, and for their catalytic activity for PrOx-CO. The pure supported Au-catalyst exhibited maximum CO conversion at 300 degrees C. The incorporation of CeO2 reduced the reaction temperature to as low as 100 degrees C, while the peak performance for CO conversion was observed for the catalyst containing Au and 5 IDCs of CeO2 (2.0 mol of CO2 formation per mol of Au per second at 135 degrees C). Further increasing the amount of CeO2 (8 IDC) resulted, however, in a decrease of the catalytic activity, resulting in a substantial reduction of the surface area and subsequent reduced access of the reaction gases (H-2, CO, O-2) to the active sites of the catalyst. |
doi_str_mv | 10.1039/d0nj04050a |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000589891400007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460772040</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-caf0ea09cb159774eff72c14ed75c3be60ad75138d1d46c22e957a12e0a962273</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYsoOI5ufIKCG0WiN2naNMux-AcDFdR1SdNb6TCT1CTFmbc3Oj6Aq_tx-DgXTpKcU7ihkMnbDswKOOSgDpIZzQpJJCvoYWTKOYGcF8fJifcrAEpFQWfJx2IiFdaMtMpjlxplrFZBrXc--NRP42hdiLk16evdgtA87a1LR4c9OjRhUOvUbodOhSEatk-1cm2kjTU_MaaXL67ekqq-Ok2OerX2ePZ358n7w_1b9USW9eNztViSkZZZIFr1gAqkbmkuheDY94JpyrETuc5aLEBFolnZ0Y4XmjGUuVCUIShZMCayeXKx7x2d_ZzQh2ZlJ2fiy4bxAoRgcZ5oXe-tL2xt7_WARmMzumGj3K4BgLyUpaQ8Evx0lv-3qyH8rlHZyYTsGzbNeC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460772040</pqid></control><display><type>article</type><title>Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Sousa, Gesiane P. ; de Oliveira, Cristine S. ; Neto, Erico Teixeira ; Sigoli, Fernando A. ; Mazali, Italo O.</creator><creatorcontrib>Sousa, Gesiane P. ; de Oliveira, Cristine S. ; Neto, Erico Teixeira ; Sigoli, Fernando A. ; Mazali, Italo O.</creatorcontrib><description>In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (IDCs), and samples with an increasing number of IDCs (x = 2, 5 and 8) were obtained. This method allowed control of the SiO2/CeO2 ratio and tailoring of samples with different crystallite sizes (2-4 nm). The (x)CeO2/S15 supports were then decorated with Au NPs through the Deposition-Precipitation (DP) method using NaOH. The DP conditions used along with the pore size limitations from each support allowed control over the Au NP size (4-9 nm). The samples were characterized by N-2 physisorption, XRD, TEM, ICP-OES, XRF, DRS and Raman Spectroscopy, and for their catalytic activity for PrOx-CO. The pure supported Au-catalyst exhibited maximum CO conversion at 300 degrees C. The incorporation of CeO2 reduced the reaction temperature to as low as 100 degrees C, while the peak performance for CO conversion was observed for the catalyst containing Au and 5 IDCs of CeO2 (2.0 mol of CO2 formation per mol of Au per second at 135 degrees C). Further increasing the amount of CeO2 (8 IDC) resulted, however, in a decrease of the catalytic activity, resulting in a substantial reduction of the surface area and subsequent reduced access of the reaction gases (H-2, CO, O-2) to the active sites of the catalyst.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d0nj04050a</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Carbon monoxide ; Catalysts ; Catalytic activity ; Catalytic converters ; Cerium oxides ; Chemistry ; Chemistry, Multidisciplinary ; Crystallites ; Gold ; Nanoparticles ; Oxidation ; Physical Sciences ; Pore size ; Porosity ; Raman spectroscopy ; Science & Technology ; Silicon dioxide</subject><ispartof>New journal of chemistry, 2020-11, Vol.44 (44), p.19028-19036</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589891400007</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p183t-caf0ea09cb159774eff72c14ed75c3be60ad75138d1d46c22e957a12e0a962273</cites><orcidid>0000-0003-1285-6765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sousa, Gesiane P.</creatorcontrib><creatorcontrib>de Oliveira, Cristine S.</creatorcontrib><creatorcontrib>Neto, Erico Teixeira</creatorcontrib><creatorcontrib>Sigoli, Fernando A.</creatorcontrib><creatorcontrib>Mazali, Italo O.</creatorcontrib><title>Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)</title><title>New journal of chemistry</title><addtitle>NEW J CHEM</addtitle><description>In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (IDCs), and samples with an increasing number of IDCs (x = 2, 5 and 8) were obtained. This method allowed control of the SiO2/CeO2 ratio and tailoring of samples with different crystallite sizes (2-4 nm). The (x)CeO2/S15 supports were then decorated with Au NPs through the Deposition-Precipitation (DP) method using NaOH. The DP conditions used along with the pore size limitations from each support allowed control over the Au NP size (4-9 nm). The samples were characterized by N-2 physisorption, XRD, TEM, ICP-OES, XRF, DRS and Raman Spectroscopy, and for their catalytic activity for PrOx-CO. The pure supported Au-catalyst exhibited maximum CO conversion at 300 degrees C. The incorporation of CeO2 reduced the reaction temperature to as low as 100 degrees C, while the peak performance for CO conversion was observed for the catalyst containing Au and 5 IDCs of CeO2 (2.0 mol of CO2 formation per mol of Au per second at 135 degrees C). Further increasing the amount of CeO2 (8 IDC) resulted, however, in a decrease of the catalytic activity, resulting in a substantial reduction of the surface area and subsequent reduced access of the reaction gases (H-2, CO, O-2) to the active sites of the catalyst.</description><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Cerium oxides</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystallites</subject><subject>Gold</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Physical Sciences</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Raman spectroscopy</subject><subject>Science & Technology</subject><subject>Silicon dioxide</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM1KxDAUhYsoOI5ufIKCG0WiN2naNMux-AcDFdR1SdNb6TCT1CTFmbc3Oj6Aq_tx-DgXTpKcU7ihkMnbDswKOOSgDpIZzQpJJCvoYWTKOYGcF8fJifcrAEpFQWfJx2IiFdaMtMpjlxplrFZBrXc--NRP42hdiLk16evdgtA87a1LR4c9OjRhUOvUbodOhSEatk-1cm2kjTU_MaaXL67ekqq-Ok2OerX2ePZ358n7w_1b9USW9eNztViSkZZZIFr1gAqkbmkuheDY94JpyrETuc5aLEBFolnZ0Y4XmjGUuVCUIShZMCayeXKx7x2d_ZzQh2ZlJ2fiy4bxAoRgcZ5oXe-tL2xt7_WARmMzumGj3K4BgLyUpaQ8Evx0lv-3qyH8rlHZyYTsGzbNeC0</recordid><startdate>20201128</startdate><enddate>20201128</enddate><creator>Sousa, Gesiane P.</creator><creator>de Oliveira, Cristine S.</creator><creator>Neto, Erico Teixeira</creator><creator>Sigoli, Fernando A.</creator><creator>Mazali, Italo O.</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope><orcidid>https://orcid.org/0000-0003-1285-6765</orcidid></search><sort><creationdate>20201128</creationdate><title>Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)</title><author>Sousa, Gesiane P. ; de Oliveira, Cristine S. ; Neto, Erico Teixeira ; Sigoli, Fernando A. ; Mazali, Italo O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-caf0ea09cb159774eff72c14ed75c3be60ad75138d1d46c22e957a12e0a962273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Cerium oxides</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystallites</topic><topic>Gold</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Physical Sciences</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Raman spectroscopy</topic><topic>Science & Technology</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa, Gesiane P.</creatorcontrib><creatorcontrib>de Oliveira, Cristine S.</creatorcontrib><creatorcontrib>Neto, Erico Teixeira</creatorcontrib><creatorcontrib>Sigoli, Fernando A.</creatorcontrib><creatorcontrib>Mazali, Italo O.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sousa, Gesiane P.</au><au>de Oliveira, Cristine S.</au><au>Neto, Erico Teixeira</au><au>Sigoli, Fernando A.</au><au>Mazali, Italo O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)</atitle><jtitle>New journal of chemistry</jtitle><stitle>NEW J CHEM</stitle><date>2020-11-28</date><risdate>2020</risdate><volume>44</volume><issue>44</issue><spage>19028</spage><epage>19036</epage><pages>19028-19036</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (IDCs), and samples with an increasing number of IDCs (x = 2, 5 and 8) were obtained. This method allowed control of the SiO2/CeO2 ratio and tailoring of samples with different crystallite sizes (2-4 nm). The (x)CeO2/S15 supports were then decorated with Au NPs through the Deposition-Precipitation (DP) method using NaOH. The DP conditions used along with the pore size limitations from each support allowed control over the Au NP size (4-9 nm). The samples were characterized by N-2 physisorption, XRD, TEM, ICP-OES, XRF, DRS and Raman Spectroscopy, and for their catalytic activity for PrOx-CO. The pure supported Au-catalyst exhibited maximum CO conversion at 300 degrees C. The incorporation of CeO2 reduced the reaction temperature to as low as 100 degrees C, while the peak performance for CO conversion was observed for the catalyst containing Au and 5 IDCs of CeO2 (2.0 mol of CO2 formation per mol of Au per second at 135 degrees C). Further increasing the amount of CeO2 (8 IDC) resulted, however, in a decrease of the catalytic activity, resulting in a substantial reduction of the surface area and subsequent reduced access of the reaction gases (H-2, CO, O-2) to the active sites of the catalyst.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/d0nj04050a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1285-6765</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1144-0546 |
ispartof | New journal of chemistry, 2020-11, Vol.44 (44), p.19028-19036 |
issn | 1144-0546 1369-9261 |
language | eng |
recordid | cdi_webofscience_primary_000589891400007 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Carbon monoxide Catalysts Catalytic activity Catalytic converters Cerium oxides Chemistry Chemistry, Multidisciplinary Crystallites Gold Nanoparticles Oxidation Physical Sciences Pore size Porosity Raman spectroscopy Science & Technology Silicon dioxide |
title | Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au-CeO2-based%20nanocatalysts%20supported%20on%20SBA-15%20for%20preferential%20oxidation%20of%20carbon%20monoxide%20(PrOx-CO)&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Sousa,%20Gesiane%20P.&rft.date=2020-11-28&rft.volume=44&rft.issue=44&rft.spage=19028&rft.epage=19036&rft.pages=19028-19036&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d0nj04050a&rft_dat=%3Cproquest_webof%3E2460772040%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460772040&rft_id=info:pmid/&rfr_iscdi=true |