Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)

In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (ID...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2020-11, Vol.44 (44), p.19028-19036
Hauptverfasser: Sousa, Gesiane P., de Oliveira, Cristine S., Neto, Erico Teixeira, Sigoli, Fernando A., Mazali, Italo O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19036
container_issue 44
container_start_page 19028
container_title New journal of chemistry
container_volume 44
creator Sousa, Gesiane P.
de Oliveira, Cristine S.
Neto, Erico Teixeira
Sigoli, Fernando A.
Mazali, Italo O.
description In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (IDCs), and samples with an increasing number of IDCs (x = 2, 5 and 8) were obtained. This method allowed control of the SiO2/CeO2 ratio and tailoring of samples with different crystallite sizes (2-4 nm). The (x)CeO2/S15 supports were then decorated with Au NPs through the Deposition-Precipitation (DP) method using NaOH. The DP conditions used along with the pore size limitations from each support allowed control over the Au NP size (4-9 nm). The samples were characterized by N-2 physisorption, XRD, TEM, ICP-OES, XRF, DRS and Raman Spectroscopy, and for their catalytic activity for PrOx-CO. The pure supported Au-catalyst exhibited maximum CO conversion at 300 degrees C. The incorporation of CeO2 reduced the reaction temperature to as low as 100 degrees C, while the peak performance for CO conversion was observed for the catalyst containing Au and 5 IDCs of CeO2 (2.0 mol of CO2 formation per mol of Au per second at 135 degrees C). Further increasing the amount of CeO2 (8 IDC) resulted, however, in a decrease of the catalytic activity, resulting in a substantial reduction of the surface area and subsequent reduced access of the reaction gases (H-2, CO, O-2) to the active sites of the catalyst.
doi_str_mv 10.1039/d0nj04050a
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000589891400007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460772040</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-caf0ea09cb159774eff72c14ed75c3be60ad75138d1d46c22e957a12e0a962273</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYsoOI5ufIKCG0WiN2naNMux-AcDFdR1SdNb6TCT1CTFmbc3Oj6Aq_tx-DgXTpKcU7ihkMnbDswKOOSgDpIZzQpJJCvoYWTKOYGcF8fJifcrAEpFQWfJx2IiFdaMtMpjlxplrFZBrXc--NRP42hdiLk16evdgtA87a1LR4c9OjRhUOvUbodOhSEatk-1cm2kjTU_MaaXL67ekqq-Ok2OerX2ePZ358n7w_1b9USW9eNztViSkZZZIFr1gAqkbmkuheDY94JpyrETuc5aLEBFolnZ0Y4XmjGUuVCUIShZMCayeXKx7x2d_ZzQh2ZlJ2fiy4bxAoRgcZ5oXe-tL2xt7_WARmMzumGj3K4BgLyUpaQ8Evx0lv-3qyH8rlHZyYTsGzbNeC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460772040</pqid></control><display><type>article</type><title>Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Sousa, Gesiane P. ; de Oliveira, Cristine S. ; Neto, Erico Teixeira ; Sigoli, Fernando A. ; Mazali, Italo O.</creator><creatorcontrib>Sousa, Gesiane P. ; de Oliveira, Cristine S. ; Neto, Erico Teixeira ; Sigoli, Fernando A. ; Mazali, Italo O.</creatorcontrib><description>In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (IDCs), and samples with an increasing number of IDCs (x = 2, 5 and 8) were obtained. This method allowed control of the SiO2/CeO2 ratio and tailoring of samples with different crystallite sizes (2-4 nm). The (x)CeO2/S15 supports were then decorated with Au NPs through the Deposition-Precipitation (DP) method using NaOH. The DP conditions used along with the pore size limitations from each support allowed control over the Au NP size (4-9 nm). The samples were characterized by N-2 physisorption, XRD, TEM, ICP-OES, XRF, DRS and Raman Spectroscopy, and for their catalytic activity for PrOx-CO. The pure supported Au-catalyst exhibited maximum CO conversion at 300 degrees C. The incorporation of CeO2 reduced the reaction temperature to as low as 100 degrees C, while the peak performance for CO conversion was observed for the catalyst containing Au and 5 IDCs of CeO2 (2.0 mol of CO2 formation per mol of Au per second at 135 degrees C). Further increasing the amount of CeO2 (8 IDC) resulted, however, in a decrease of the catalytic activity, resulting in a substantial reduction of the surface area and subsequent reduced access of the reaction gases (H-2, CO, O-2) to the active sites of the catalyst.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d0nj04050a</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Carbon monoxide ; Catalysts ; Catalytic activity ; Catalytic converters ; Cerium oxides ; Chemistry ; Chemistry, Multidisciplinary ; Crystallites ; Gold ; Nanoparticles ; Oxidation ; Physical Sciences ; Pore size ; Porosity ; Raman spectroscopy ; Science &amp; Technology ; Silicon dioxide</subject><ispartof>New journal of chemistry, 2020-11, Vol.44 (44), p.19028-19036</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589891400007</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p183t-caf0ea09cb159774eff72c14ed75c3be60ad75138d1d46c22e957a12e0a962273</cites><orcidid>0000-0003-1285-6765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sousa, Gesiane P.</creatorcontrib><creatorcontrib>de Oliveira, Cristine S.</creatorcontrib><creatorcontrib>Neto, Erico Teixeira</creatorcontrib><creatorcontrib>Sigoli, Fernando A.</creatorcontrib><creatorcontrib>Mazali, Italo O.</creatorcontrib><title>Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)</title><title>New journal of chemistry</title><addtitle>NEW J CHEM</addtitle><description>In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (IDCs), and samples with an increasing number of IDCs (x = 2, 5 and 8) were obtained. This method allowed control of the SiO2/CeO2 ratio and tailoring of samples with different crystallite sizes (2-4 nm). The (x)CeO2/S15 supports were then decorated with Au NPs through the Deposition-Precipitation (DP) method using NaOH. The DP conditions used along with the pore size limitations from each support allowed control over the Au NP size (4-9 nm). The samples were characterized by N-2 physisorption, XRD, TEM, ICP-OES, XRF, DRS and Raman Spectroscopy, and for their catalytic activity for PrOx-CO. The pure supported Au-catalyst exhibited maximum CO conversion at 300 degrees C. The incorporation of CeO2 reduced the reaction temperature to as low as 100 degrees C, while the peak performance for CO conversion was observed for the catalyst containing Au and 5 IDCs of CeO2 (2.0 mol of CO2 formation per mol of Au per second at 135 degrees C). Further increasing the amount of CeO2 (8 IDC) resulted, however, in a decrease of the catalytic activity, resulting in a substantial reduction of the surface area and subsequent reduced access of the reaction gases (H-2, CO, O-2) to the active sites of the catalyst.</description><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Catalytic converters</subject><subject>Cerium oxides</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystallites</subject><subject>Gold</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Physical Sciences</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Raman spectroscopy</subject><subject>Science &amp; Technology</subject><subject>Silicon dioxide</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM1KxDAUhYsoOI5ufIKCG0WiN2naNMux-AcDFdR1SdNb6TCT1CTFmbc3Oj6Aq_tx-DgXTpKcU7ihkMnbDswKOOSgDpIZzQpJJCvoYWTKOYGcF8fJifcrAEpFQWfJx2IiFdaMtMpjlxplrFZBrXc--NRP42hdiLk16evdgtA87a1LR4c9OjRhUOvUbodOhSEatk-1cm2kjTU_MaaXL67ekqq-Ok2OerX2ePZ358n7w_1b9USW9eNztViSkZZZIFr1gAqkbmkuheDY94JpyrETuc5aLEBFolnZ0Y4XmjGUuVCUIShZMCayeXKx7x2d_ZzQh2ZlJ2fiy4bxAoRgcZ5oXe-tL2xt7_WARmMzumGj3K4BgLyUpaQ8Evx0lv-3qyH8rlHZyYTsGzbNeC0</recordid><startdate>20201128</startdate><enddate>20201128</enddate><creator>Sousa, Gesiane P.</creator><creator>de Oliveira, Cristine S.</creator><creator>Neto, Erico Teixeira</creator><creator>Sigoli, Fernando A.</creator><creator>Mazali, Italo O.</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope><orcidid>https://orcid.org/0000-0003-1285-6765</orcidid></search><sort><creationdate>20201128</creationdate><title>Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)</title><author>Sousa, Gesiane P. ; de Oliveira, Cristine S. ; Neto, Erico Teixeira ; Sigoli, Fernando A. ; Mazali, Italo O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-caf0ea09cb159774eff72c14ed75c3be60ad75138d1d46c22e957a12e0a962273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Catalytic converters</topic><topic>Cerium oxides</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystallites</topic><topic>Gold</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Physical Sciences</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Raman spectroscopy</topic><topic>Science &amp; Technology</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa, Gesiane P.</creatorcontrib><creatorcontrib>de Oliveira, Cristine S.</creatorcontrib><creatorcontrib>Neto, Erico Teixeira</creatorcontrib><creatorcontrib>Sigoli, Fernando A.</creatorcontrib><creatorcontrib>Mazali, Italo O.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sousa, Gesiane P.</au><au>de Oliveira, Cristine S.</au><au>Neto, Erico Teixeira</au><au>Sigoli, Fernando A.</au><au>Mazali, Italo O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)</atitle><jtitle>New journal of chemistry</jtitle><stitle>NEW J CHEM</stitle><date>2020-11-28</date><risdate>2020</risdate><volume>44</volume><issue>44</issue><spage>19028</spage><epage>19036</epage><pages>19028-19036</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>In this work, as-synthesized SBA-15 was used as a support for CeO2 and Au nanoparticles (NPs), in order to stabilize them and to promote the metal/oxide interface contact. CeO2 NPs were grown within the pores of SBA-15 using the method of successive metalorganic impregnation-decomposition cycles (IDCs), and samples with an increasing number of IDCs (x = 2, 5 and 8) were obtained. This method allowed control of the SiO2/CeO2 ratio and tailoring of samples with different crystallite sizes (2-4 nm). The (x)CeO2/S15 supports were then decorated with Au NPs through the Deposition-Precipitation (DP) method using NaOH. The DP conditions used along with the pore size limitations from each support allowed control over the Au NP size (4-9 nm). The samples were characterized by N-2 physisorption, XRD, TEM, ICP-OES, XRF, DRS and Raman Spectroscopy, and for their catalytic activity for PrOx-CO. The pure supported Au-catalyst exhibited maximum CO conversion at 300 degrees C. The incorporation of CeO2 reduced the reaction temperature to as low as 100 degrees C, while the peak performance for CO conversion was observed for the catalyst containing Au and 5 IDCs of CeO2 (2.0 mol of CO2 formation per mol of Au per second at 135 degrees C). Further increasing the amount of CeO2 (8 IDC) resulted, however, in a decrease of the catalytic activity, resulting in a substantial reduction of the surface area and subsequent reduced access of the reaction gases (H-2, CO, O-2) to the active sites of the catalyst.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/d0nj04050a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1285-6765</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2020-11, Vol.44 (44), p.19028-19036
issn 1144-0546
1369-9261
language eng
recordid cdi_webofscience_primary_000589891400007
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Carbon monoxide
Catalysts
Catalytic activity
Catalytic converters
Cerium oxides
Chemistry
Chemistry, Multidisciplinary
Crystallites
Gold
Nanoparticles
Oxidation
Physical Sciences
Pore size
Porosity
Raman spectroscopy
Science & Technology
Silicon dioxide
title Au-CeO2-based nanocatalysts supported on SBA-15 for preferential oxidation of carbon monoxide (PrOx-CO)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au-CeO2-based%20nanocatalysts%20supported%20on%20SBA-15%20for%20preferential%20oxidation%20of%20carbon%20monoxide%20(PrOx-CO)&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Sousa,%20Gesiane%20P.&rft.date=2020-11-28&rft.volume=44&rft.issue=44&rft.spage=19028&rft.epage=19036&rft.pages=19028-19036&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d0nj04050a&rft_dat=%3Cproquest_webof%3E2460772040%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460772040&rft_id=info:pmid/&rfr_iscdi=true