Patterned piezoelectric scaffolds for osteogenic differentiation
The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroact...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-11, Vol.21 (21), p.1-8, Article 8352 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 21 |
container_start_page | 1 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Almeida, Teresa Isabel Marques Cardoso, Vanessa Fernandes Gama, F. M. Lanceros-Méndez, S. Ribeiro, Clarisse |
description | The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration.
This work was supported by national funds through the Fundação para a Ciência e Tecnologia (FCT) and by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) in the framework of the Strategic Programs UID/FIS/04650/2020 and UIDB/04436/2020 and projects PTDC/EMD-EMD/28159/2017 and PTDC/BTM-MAT/28237/2017. TA thank FCT for the grant SFRH/BD/141136/2018 and CR thanks the FCT for the contract under the Stimulus of Scientific Employment (DL57/2016 junior researcher contract). Finally, the authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK and PIBA (PIBA-2018-06) programs, respectively. |
doi_str_mv | 10.3390/ijms21218352 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_webof</sourceid><recordid>TN_cdi_webofscience_primary_000589158600001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6217e00ea9184afe970c9ce2c6007eed</doaj_id><sourcerecordid>33171761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ec363003ee4e4bd7526cfb3bd1b754b940329266b5d3db8f567abb273fcbee7d3</originalsourceid><addsrcrecordid>eNqNkc9vFCEYhonR2Fq9eW7mbrd-wAAzl6ZmU9smTfSgZ8KPjy2b2WEDtEb_-s52dLO9eYLwPe8D5CXkI4Vzznv4HNebwiijHRfsFTmmLWMLAKleH-yPyLtS1gCMM9G_JUecU0WVpMfk8rupFfOIvtlG_JNwQFdzdE1xJoQ0-NKElJtUKqYVjtPAxxAw41ijqTGN78mbYIaCH_6uJ-Tn16sfy5vF3bfr2-WXu4VrlagLdFxyAI7YYmu9Eky6YLn11CrR2r4FznompRWee9sFIZWxlikenEVUnp-Q29nrk1nrbY4bk3_rZKJ-Pkh5pU2u0Q2oJaMKAdD0tGtNwF6B6x0yJwEU4s51Mbu2D3aD3k2fyWZ4IX05GeO9XqVHraRikqtJcDYLXE6lZAz7LAW9a0UftjLhp4f37eF_NUzApxn4hTaF4iKODvcYAIiup6Kb3g-wo7v_p5exPve0TA9jnaLNHM3OmK3O-BhLNUXTjjEtO9ZK_gSUFLZS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Patterned piezoelectric scaffolds for osteogenic differentiation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Almeida, Teresa Isabel Marques ; Cardoso, Vanessa Fernandes ; Gama, F. M. ; Lanceros-Méndez, S. ; Ribeiro, Clarisse</creator><creatorcontrib>Almeida, Teresa Isabel Marques ; Cardoso, Vanessa Fernandes ; Gama, F. M. ; Lanceros-Méndez, S. ; Ribeiro, Clarisse</creatorcontrib><description>The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration.
This work was supported by national funds through the Fundação para a Ciência e Tecnologia (FCT) and by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) in the framework of the Strategic Programs UID/FIS/04650/2020 and UIDB/04436/2020 and projects PTDC/EMD-EMD/28159/2017 and PTDC/BTM-MAT/28237/2017. TA thank FCT for the grant SFRH/BD/141136/2018 and CR thanks the FCT for the contract under the Stimulus of Scientific Employment (DL57/2016 junior researcher contract). Finally, the authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK and PIBA (PIBA-2018-06) programs, respectively.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21218352</identifier><identifier>PMID: 33171761</identifier><language>eng</language><publisher>BASEL: Multidisciplinary Digital Publishing Institute</publisher><subject>3T3 Cells ; Animals ; Biochemistry & Molecular Biology ; Biocompatible Materials - chemistry ; Bone and Bones - metabolism ; Bone Regeneration - drug effects ; bone tissue engineering ; Cell Culture Techniques - methods ; cell differentiation ; Cell Differentiation - drug effects ; Cell Proliferation ; Cell Survival ; Chemistry ; Chemistry, Multidisciplinary ; Ciências Físicas ; Ciências Naturais ; electroactive ; Hydrocarbons, Fluorinated - chemistry ; Hydrocarbons, Fluorinated - pharmacology ; Life Sciences & Biomedicine ; Mice ; Osteoblasts - metabolism ; Osteogenesis ; patterning ; Physical Sciences ; piezoelectric ; Polyvinyls - chemistry ; Science & Technology ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Titanium - chemistry ; Vinyl Compounds - chemistry ; Vinyl Compounds - pharmacology</subject><ispartof>International journal of molecular sciences, 2020-11, Vol.21 (21), p.1-8, Article 8352</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589158600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c475t-ec363003ee4e4bd7526cfb3bd1b754b940329266b5d3db8f567abb273fcbee7d3</citedby><cites>FETCH-LOGICAL-c475t-ec363003ee4e4bd7526cfb3bd1b754b940329266b5d3db8f567abb273fcbee7d3</cites><orcidid>0000-0002-9120-4847 ; 0000-0002-5655-0015 ; 0000-0001-7094-4638 ; 0000-0002-3039-5520 ; 0000-0001-6791-7620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672637/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672637/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33171761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Almeida, Teresa Isabel Marques</creatorcontrib><creatorcontrib>Cardoso, Vanessa Fernandes</creatorcontrib><creatorcontrib>Gama, F. M.</creatorcontrib><creatorcontrib>Lanceros-Méndez, S.</creatorcontrib><creatorcontrib>Ribeiro, Clarisse</creatorcontrib><title>Patterned piezoelectric scaffolds for osteogenic differentiation</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration.
This work was supported by national funds through the Fundação para a Ciência e Tecnologia (FCT) and by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) in the framework of the Strategic Programs UID/FIS/04650/2020 and UIDB/04436/2020 and projects PTDC/EMD-EMD/28159/2017 and PTDC/BTM-MAT/28237/2017. TA thank FCT for the grant SFRH/BD/141136/2018 and CR thanks the FCT for the contract under the Stimulus of Scientific Employment (DL57/2016 junior researcher contract). Finally, the authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK and PIBA (PIBA-2018-06) programs, respectively.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bone and Bones - metabolism</subject><subject>Bone Regeneration - drug effects</subject><subject>bone tissue engineering</subject><subject>Cell Culture Techniques - methods</subject><subject>cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Ciências Físicas</subject><subject>Ciências Naturais</subject><subject>electroactive</subject><subject>Hydrocarbons, Fluorinated - chemistry</subject><subject>Hydrocarbons, Fluorinated - pharmacology</subject><subject>Life Sciences & Biomedicine</subject><subject>Mice</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>patterning</subject><subject>Physical Sciences</subject><subject>piezoelectric</subject><subject>Polyvinyls - chemistry</subject><subject>Science & Technology</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Titanium - chemistry</subject><subject>Vinyl Compounds - chemistry</subject><subject>Vinyl Compounds - pharmacology</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc9vFCEYhonR2Fq9eW7mbrd-wAAzl6ZmU9smTfSgZ8KPjy2b2WEDtEb_-s52dLO9eYLwPe8D5CXkI4Vzznv4HNebwiijHRfsFTmmLWMLAKleH-yPyLtS1gCMM9G_JUecU0WVpMfk8rupFfOIvtlG_JNwQFdzdE1xJoQ0-NKElJtUKqYVjtPAxxAw41ijqTGN78mbYIaCH_6uJ-Tn16sfy5vF3bfr2-WXu4VrlagLdFxyAI7YYmu9Eky6YLn11CrR2r4FznompRWee9sFIZWxlikenEVUnp-Q29nrk1nrbY4bk3_rZKJ-Pkh5pU2u0Q2oJaMKAdD0tGtNwF6B6x0yJwEU4s51Mbu2D3aD3k2fyWZ4IX05GeO9XqVHraRikqtJcDYLXE6lZAz7LAW9a0UftjLhp4f37eF_NUzApxn4hTaF4iKODvcYAIiup6Kb3g-wo7v_p5exPve0TA9jnaLNHM3OmK3O-BhLNUXTjjEtO9ZK_gSUFLZS</recordid><startdate>20201107</startdate><enddate>20201107</enddate><creator>Almeida, Teresa Isabel Marques</creator><creator>Cardoso, Vanessa Fernandes</creator><creator>Gama, F. M.</creator><creator>Lanceros-Méndez, S.</creator><creator>Ribeiro, Clarisse</creator><general>Multidisciplinary Digital Publishing Institute</general><general>Mdpi</general><general>MDPI</general><general>MDPI AG</general><scope>RCLKO</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9120-4847</orcidid><orcidid>https://orcid.org/0000-0002-5655-0015</orcidid><orcidid>https://orcid.org/0000-0001-7094-4638</orcidid><orcidid>https://orcid.org/0000-0002-3039-5520</orcidid><orcidid>https://orcid.org/0000-0001-6791-7620</orcidid></search><sort><creationdate>20201107</creationdate><title>Patterned piezoelectric scaffolds for osteogenic differentiation</title><author>Almeida, Teresa Isabel Marques ; Cardoso, Vanessa Fernandes ; Gama, F. M. ; Lanceros-Méndez, S. ; Ribeiro, Clarisse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ec363003ee4e4bd7526cfb3bd1b754b940329266b5d3db8f567abb273fcbee7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bone and Bones - metabolism</topic><topic>Bone Regeneration - drug effects</topic><topic>bone tissue engineering</topic><topic>Cell Culture Techniques - methods</topic><topic>cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Ciências Físicas</topic><topic>Ciências Naturais</topic><topic>electroactive</topic><topic>Hydrocarbons, Fluorinated - chemistry</topic><topic>Hydrocarbons, Fluorinated - pharmacology</topic><topic>Life Sciences & Biomedicine</topic><topic>Mice</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>patterning</topic><topic>Physical Sciences</topic><topic>piezoelectric</topic><topic>Polyvinyls - chemistry</topic><topic>Science & Technology</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Titanium - chemistry</topic><topic>Vinyl Compounds - chemistry</topic><topic>Vinyl Compounds - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Teresa Isabel Marques</creatorcontrib><creatorcontrib>Cardoso, Vanessa Fernandes</creatorcontrib><creatorcontrib>Gama, F. M.</creatorcontrib><creatorcontrib>Lanceros-Méndez, S.</creatorcontrib><creatorcontrib>Ribeiro, Clarisse</creatorcontrib><collection>RCAAP open access repository</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Teresa Isabel Marques</au><au>Cardoso, Vanessa Fernandes</au><au>Gama, F. M.</au><au>Lanceros-Méndez, S.</au><au>Ribeiro, Clarisse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterned piezoelectric scaffolds for osteogenic differentiation</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2020-11-07</date><risdate>2020</risdate><volume>21</volume><issue>21</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>8352</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration.
This work was supported by national funds through the Fundação para a Ciência e Tecnologia (FCT) and by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) in the framework of the Strategic Programs UID/FIS/04650/2020 and UIDB/04436/2020 and projects PTDC/EMD-EMD/28159/2017 and PTDC/BTM-MAT/28237/2017. TA thank FCT for the grant SFRH/BD/141136/2018 and CR thanks the FCT for the contract under the Stimulus of Scientific Employment (DL57/2016 junior researcher contract). Finally, the authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK and PIBA (PIBA-2018-06) programs, respectively.</abstract><cop>BASEL</cop><pub>Multidisciplinary Digital Publishing Institute</pub><pmid>33171761</pmid><doi>10.3390/ijms21218352</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9120-4847</orcidid><orcidid>https://orcid.org/0000-0002-5655-0015</orcidid><orcidid>https://orcid.org/0000-0001-7094-4638</orcidid><orcidid>https://orcid.org/0000-0002-3039-5520</orcidid><orcidid>https://orcid.org/0000-0001-6791-7620</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-11, Vol.21 (21), p.1-8, Article 8352 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_webofscience_primary_000589158600001CitationCount |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | 3T3 Cells Animals Biochemistry & Molecular Biology Biocompatible Materials - chemistry Bone and Bones - metabolism Bone Regeneration - drug effects bone tissue engineering Cell Culture Techniques - methods cell differentiation Cell Differentiation - drug effects Cell Proliferation Cell Survival Chemistry Chemistry, Multidisciplinary Ciências Físicas Ciências Naturais electroactive Hydrocarbons, Fluorinated - chemistry Hydrocarbons, Fluorinated - pharmacology Life Sciences & Biomedicine Mice Osteoblasts - metabolism Osteogenesis patterning Physical Sciences piezoelectric Polyvinyls - chemistry Science & Technology Tissue Engineering - methods Tissue Scaffolds - chemistry Titanium - chemistry Vinyl Compounds - chemistry Vinyl Compounds - pharmacology |
title | Patterned piezoelectric scaffolds for osteogenic differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterned%20piezoelectric%20scaffolds%20for%20osteogenic%20differentiation&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Almeida,%20Teresa%20Isabel%20Marques&rft.date=2020-11-07&rft.volume=21&rft.issue=21&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=8352&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21218352&rft_dat=%3Cpubmed_webof%3E33171761%3C/pubmed_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33171761&rft_doaj_id=oai_doaj_org_article_6217e00ea9184afe970c9ce2c6007eed&rfr_iscdi=true |