Patterned piezoelectric scaffolds for osteogenic differentiation

The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-11, Vol.21 (21), p.1-8, Article 8352
Hauptverfasser: Almeida, Teresa Isabel Marques, Cardoso, Vanessa Fernandes, Gama, F. M., Lanceros-Méndez, S., Ribeiro, Clarisse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 21
container_start_page 1
container_title International journal of molecular sciences
container_volume 21
creator Almeida, Teresa Isabel Marques
Cardoso, Vanessa Fernandes
Gama, F. M.
Lanceros-Méndez, S.
Ribeiro, Clarisse
description The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration. This work was supported by national funds through the Fundação para a Ciência e Tecnologia (FCT) and by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) in the framework of the Strategic Programs UID/FIS/04650/2020 and UIDB/04436/2020 and projects PTDC/EMD-EMD/28159/2017 and PTDC/BTM-MAT/28237/2017. TA thank FCT for the grant SFRH/BD/141136/2018 and CR thanks the FCT for the contract under the Stimulus of Scientific Employment (DL57/2016 junior researcher contract). Finally, the authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK and PIBA (PIBA-2018-06) programs, respectively.
doi_str_mv 10.3390/ijms21218352
format Article
fullrecord <record><control><sourceid>pubmed_webof</sourceid><recordid>TN_cdi_webofscience_primary_000589158600001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6217e00ea9184afe970c9ce2c6007eed</doaj_id><sourcerecordid>33171761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-ec363003ee4e4bd7526cfb3bd1b754b940329266b5d3db8f567abb273fcbee7d3</originalsourceid><addsrcrecordid>eNqNkc9vFCEYhonR2Fq9eW7mbrd-wAAzl6ZmU9smTfSgZ8KPjy2b2WEDtEb_-s52dLO9eYLwPe8D5CXkI4Vzznv4HNebwiijHRfsFTmmLWMLAKleH-yPyLtS1gCMM9G_JUecU0WVpMfk8rupFfOIvtlG_JNwQFdzdE1xJoQ0-NKElJtUKqYVjtPAxxAw41ijqTGN78mbYIaCH_6uJ-Tn16sfy5vF3bfr2-WXu4VrlagLdFxyAI7YYmu9Eky6YLn11CrR2r4FznompRWee9sFIZWxlikenEVUnp-Q29nrk1nrbY4bk3_rZKJ-Pkh5pU2u0Q2oJaMKAdD0tGtNwF6B6x0yJwEU4s51Mbu2D3aD3k2fyWZ4IX05GeO9XqVHraRikqtJcDYLXE6lZAz7LAW9a0UftjLhp4f37eF_NUzApxn4hTaF4iKODvcYAIiup6Kb3g-wo7v_p5exPve0TA9jnaLNHM3OmK3O-BhLNUXTjjEtO9ZK_gSUFLZS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Patterned piezoelectric scaffolds for osteogenic differentiation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Almeida, Teresa Isabel Marques ; Cardoso, Vanessa Fernandes ; Gama, F. M. ; Lanceros-Méndez, S. ; Ribeiro, Clarisse</creator><creatorcontrib>Almeida, Teresa Isabel Marques ; Cardoso, Vanessa Fernandes ; Gama, F. M. ; Lanceros-Méndez, S. ; Ribeiro, Clarisse</creatorcontrib><description>The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration. This work was supported by national funds through the Fundação para a Ciência e Tecnologia (FCT) and by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) in the framework of the Strategic Programs UID/FIS/04650/2020 and UIDB/04436/2020 and projects PTDC/EMD-EMD/28159/2017 and PTDC/BTM-MAT/28237/2017. TA thank FCT for the grant SFRH/BD/141136/2018 and CR thanks the FCT for the contract under the Stimulus of Scientific Employment (DL57/2016 junior researcher contract). Finally, the authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK and PIBA (PIBA-2018-06) programs, respectively.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21218352</identifier><identifier>PMID: 33171761</identifier><language>eng</language><publisher>BASEL: Multidisciplinary Digital Publishing Institute</publisher><subject>3T3 Cells ; Animals ; Biochemistry &amp; Molecular Biology ; Biocompatible Materials - chemistry ; Bone and Bones - metabolism ; Bone Regeneration - drug effects ; bone tissue engineering ; Cell Culture Techniques - methods ; cell differentiation ; Cell Differentiation - drug effects ; Cell Proliferation ; Cell Survival ; Chemistry ; Chemistry, Multidisciplinary ; Ciências Físicas ; Ciências Naturais ; electroactive ; Hydrocarbons, Fluorinated - chemistry ; Hydrocarbons, Fluorinated - pharmacology ; Life Sciences &amp; Biomedicine ; Mice ; Osteoblasts - metabolism ; Osteogenesis ; patterning ; Physical Sciences ; piezoelectric ; Polyvinyls - chemistry ; Science &amp; Technology ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Titanium - chemistry ; Vinyl Compounds - chemistry ; Vinyl Compounds - pharmacology</subject><ispartof>International journal of molecular sciences, 2020-11, Vol.21 (21), p.1-8, Article 8352</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000589158600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c475t-ec363003ee4e4bd7526cfb3bd1b754b940329266b5d3db8f567abb273fcbee7d3</citedby><cites>FETCH-LOGICAL-c475t-ec363003ee4e4bd7526cfb3bd1b754b940329266b5d3db8f567abb273fcbee7d3</cites><orcidid>0000-0002-9120-4847 ; 0000-0002-5655-0015 ; 0000-0001-7094-4638 ; 0000-0002-3039-5520 ; 0000-0001-6791-7620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672637/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672637/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,28255,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33171761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Almeida, Teresa Isabel Marques</creatorcontrib><creatorcontrib>Cardoso, Vanessa Fernandes</creatorcontrib><creatorcontrib>Gama, F. M.</creatorcontrib><creatorcontrib>Lanceros-Méndez, S.</creatorcontrib><creatorcontrib>Ribeiro, Clarisse</creatorcontrib><title>Patterned piezoelectric scaffolds for osteogenic differentiation</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration. This work was supported by national funds through the Fundação para a Ciência e Tecnologia (FCT) and by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) in the framework of the Strategic Programs UID/FIS/04650/2020 and UIDB/04436/2020 and projects PTDC/EMD-EMD/28159/2017 and PTDC/BTM-MAT/28237/2017. TA thank FCT for the grant SFRH/BD/141136/2018 and CR thanks the FCT for the contract under the Stimulus of Scientific Employment (DL57/2016 junior researcher contract). Finally, the authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK and PIBA (PIBA-2018-06) programs, respectively.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Biocompatible Materials - chemistry</subject><subject>Bone and Bones - metabolism</subject><subject>Bone Regeneration - drug effects</subject><subject>bone tissue engineering</subject><subject>Cell Culture Techniques - methods</subject><subject>cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Ciências Físicas</subject><subject>Ciências Naturais</subject><subject>electroactive</subject><subject>Hydrocarbons, Fluorinated - chemistry</subject><subject>Hydrocarbons, Fluorinated - pharmacology</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mice</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>patterning</subject><subject>Physical Sciences</subject><subject>piezoelectric</subject><subject>Polyvinyls - chemistry</subject><subject>Science &amp; Technology</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Titanium - chemistry</subject><subject>Vinyl Compounds - chemistry</subject><subject>Vinyl Compounds - pharmacology</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc9vFCEYhonR2Fq9eW7mbrd-wAAzl6ZmU9smTfSgZ8KPjy2b2WEDtEb_-s52dLO9eYLwPe8D5CXkI4Vzznv4HNebwiijHRfsFTmmLWMLAKleH-yPyLtS1gCMM9G_JUecU0WVpMfk8rupFfOIvtlG_JNwQFdzdE1xJoQ0-NKElJtUKqYVjtPAxxAw41ijqTGN78mbYIaCH_6uJ-Tn16sfy5vF3bfr2-WXu4VrlagLdFxyAI7YYmu9Eky6YLn11CrR2r4FznompRWee9sFIZWxlikenEVUnp-Q29nrk1nrbY4bk3_rZKJ-Pkh5pU2u0Q2oJaMKAdD0tGtNwF6B6x0yJwEU4s51Mbu2D3aD3k2fyWZ4IX05GeO9XqVHraRikqtJcDYLXE6lZAz7LAW9a0UftjLhp4f37eF_NUzApxn4hTaF4iKODvcYAIiup6Kb3g-wo7v_p5exPve0TA9jnaLNHM3OmK3O-BhLNUXTjjEtO9ZK_gSUFLZS</recordid><startdate>20201107</startdate><enddate>20201107</enddate><creator>Almeida, Teresa Isabel Marques</creator><creator>Cardoso, Vanessa Fernandes</creator><creator>Gama, F. M.</creator><creator>Lanceros-Méndez, S.</creator><creator>Ribeiro, Clarisse</creator><general>Multidisciplinary Digital Publishing Institute</general><general>Mdpi</general><general>MDPI</general><general>MDPI AG</general><scope>RCLKO</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9120-4847</orcidid><orcidid>https://orcid.org/0000-0002-5655-0015</orcidid><orcidid>https://orcid.org/0000-0001-7094-4638</orcidid><orcidid>https://orcid.org/0000-0002-3039-5520</orcidid><orcidid>https://orcid.org/0000-0001-6791-7620</orcidid></search><sort><creationdate>20201107</creationdate><title>Patterned piezoelectric scaffolds for osteogenic differentiation</title><author>Almeida, Teresa Isabel Marques ; Cardoso, Vanessa Fernandes ; Gama, F. M. ; Lanceros-Méndez, S. ; Ribeiro, Clarisse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-ec363003ee4e4bd7526cfb3bd1b754b940329266b5d3db8f567abb273fcbee7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Biocompatible Materials - chemistry</topic><topic>Bone and Bones - metabolism</topic><topic>Bone Regeneration - drug effects</topic><topic>bone tissue engineering</topic><topic>Cell Culture Techniques - methods</topic><topic>cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Ciências Físicas</topic><topic>Ciências Naturais</topic><topic>electroactive</topic><topic>Hydrocarbons, Fluorinated - chemistry</topic><topic>Hydrocarbons, Fluorinated - pharmacology</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mice</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>patterning</topic><topic>Physical Sciences</topic><topic>piezoelectric</topic><topic>Polyvinyls - chemistry</topic><topic>Science &amp; Technology</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Titanium - chemistry</topic><topic>Vinyl Compounds - chemistry</topic><topic>Vinyl Compounds - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Teresa Isabel Marques</creatorcontrib><creatorcontrib>Cardoso, Vanessa Fernandes</creatorcontrib><creatorcontrib>Gama, F. M.</creatorcontrib><creatorcontrib>Lanceros-Méndez, S.</creatorcontrib><creatorcontrib>Ribeiro, Clarisse</creatorcontrib><collection>RCAAP open access repository</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Teresa Isabel Marques</au><au>Cardoso, Vanessa Fernandes</au><au>Gama, F. M.</au><au>Lanceros-Méndez, S.</au><au>Ribeiro, Clarisse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterned piezoelectric scaffolds for osteogenic differentiation</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2020-11-07</date><risdate>2020</risdate><volume>21</volume><issue>21</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>8352</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration. This work was supported by national funds through the Fundação para a Ciência e Tecnologia (FCT) and by ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) in the framework of the Strategic Programs UID/FIS/04650/2020 and UIDB/04436/2020 and projects PTDC/EMD-EMD/28159/2017 and PTDC/BTM-MAT/28237/2017. TA thank FCT for the grant SFRH/BD/141136/2018 and CR thanks the FCT for the contract under the Stimulus of Scientific Employment (DL57/2016 junior researcher contract). Finally, the authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033 and from the Basque Government Industry and Education Departments under the ELKARTEK and PIBA (PIBA-2018-06) programs, respectively.</abstract><cop>BASEL</cop><pub>Multidisciplinary Digital Publishing Institute</pub><pmid>33171761</pmid><doi>10.3390/ijms21218352</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9120-4847</orcidid><orcidid>https://orcid.org/0000-0002-5655-0015</orcidid><orcidid>https://orcid.org/0000-0001-7094-4638</orcidid><orcidid>https://orcid.org/0000-0002-3039-5520</orcidid><orcidid>https://orcid.org/0000-0001-6791-7620</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-11, Vol.21 (21), p.1-8, Article 8352
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_webofscience_primary_000589158600001CitationCount
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects 3T3 Cells
Animals
Biochemistry & Molecular Biology
Biocompatible Materials - chemistry
Bone and Bones - metabolism
Bone Regeneration - drug effects
bone tissue engineering
Cell Culture Techniques - methods
cell differentiation
Cell Differentiation - drug effects
Cell Proliferation
Cell Survival
Chemistry
Chemistry, Multidisciplinary
Ciências Físicas
Ciências Naturais
electroactive
Hydrocarbons, Fluorinated - chemistry
Hydrocarbons, Fluorinated - pharmacology
Life Sciences & Biomedicine
Mice
Osteoblasts - metabolism
Osteogenesis
patterning
Physical Sciences
piezoelectric
Polyvinyls - chemistry
Science & Technology
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Titanium - chemistry
Vinyl Compounds - chemistry
Vinyl Compounds - pharmacology
title Patterned piezoelectric scaffolds for osteogenic differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterned%20piezoelectric%20scaffolds%20for%20osteogenic%20differentiation&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Almeida,%20Teresa%20Isabel%20Marques&rft.date=2020-11-07&rft.volume=21&rft.issue=21&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=8352&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21218352&rft_dat=%3Cpubmed_webof%3E33171761%3C/pubmed_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33171761&rft_doaj_id=oai_doaj_org_article_6217e00ea9184afe970c9ce2c6007eed&rfr_iscdi=true