Bayesian sensitivity analysis to unmeasured confounding for misclassified data

Bayesian sensitivity analysis of unmeasured confounding is proposed for observational data with misclassified outcome. The approach simultaneously corrects bias from error in the outcome and examines possible change in the exposure effect estimation assuming the presence of a binary unmeasured confo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in statistical analysis : AStA : a journal of the German Statistical Society 2020-12, Vol.104 (4), p.577-596
Hauptverfasser: Zhou, Qi, Chin, Yoo-Mi, Stamey, James D., Song, Joon Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bayesian sensitivity analysis of unmeasured confounding is proposed for observational data with misclassified outcome. The approach simultaneously corrects bias from error in the outcome and examines possible change in the exposure effect estimation assuming the presence of a binary unmeasured confounder. We assess the influence of unmeasured confounding on the exposure effect estimation through two sensitivity parameters that characterize the associations of the unmeasured confounder with the exposure status and with the outcome variable. The proposed approach is illustrated in the study of the effect of female employment status on the likelihood of domestic violence. An extensive simulation study is conducted to confirm the efficacy of the proposed approach. The simulation results indicate accounting for misclassification in outcome and unmeasured confounding significantly reduce the bias in exposure effect estimation and improve the coverage probability of credible intervals.
ISSN:1863-8171
1863-818X
DOI:10.1007/s10182-019-00357-1