Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components

Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.6352-6361
Hauptverfasser: Vinayaraj, Poliyapram, Sugimoto, Ryu, Nakamura, Ryosuke, Yamaguchi, Yoshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6361
container_issue
container_start_page 6352
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Vinayaraj, Poliyapram
Sugimoto, Ryu
Nakamura, Ryosuke
Yamaguchi, Yoshio
description Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. However, the deep-learning-based segmentation of synthetic aperture radar images still remains a challenging task due to the unavailability of enough labeled data. In order to overcome this issue, we designed a two-step deep-learning-based transfer learning model that needs a very limited number of labeled samples. The proposed approach consists of two models. The first model is a deep encoder-decoder 6SD to Landsat-8 multispectral translation model (DTF) that translates fully polarimetric PALSAR-2 6SD data to six new features. As for the second model (transfer learning), it utilizes the DTF features to fine-tune the model using the Landsat-8 multispectral pretrained model for water/ice/land segmentation. Hereinafter, the proposed two-step model is referred to as DTF-TL. Also, a qualitative and quantitative analysis was carried out to evaluate the performance of the proposed model (DTF-TL) and compare it with various transfer learning methods. Overall, the DTF-TL model outperformed the other models with consistent and reliable water/ice/land segmentation results in terms of the recall (0.980), precision (0.981), F1-score (0.981), mean intersection over union (0.962), and accuracy (0.989).
doi_str_mv 10.1109/JSTARS.2020.3031020
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000587911400003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9224151</ieee_id><doaj_id>oai_doaj_org_article_d60612a9a4f644d394fc8f73e9b3df45</doaj_id><sourcerecordid>2457975164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3806bb0c78b6d247f31bd8861a1c9520d90bca2953bee0fd8a7f6eae4a3a401e3</originalsourceid><addsrcrecordid>eNqNkktvGyEURlHVSnXT_oJsRuqyGvfynGFpTV-prDSKXWWJGObiYsWDC2NF_ffFmSjdls1FcM4F8UHIJYUlpaA_ft9sV7ebJQMGSw6clvqCLBiVtKaSy5dkQTXXNRUgXpM3Oe8BFGs0X5C7bbJj9piqNdo0hnFX3YXpV9VdX-fKx1RtcHfAcbJTiGMVfXWzWm9WtzWrbuJDsT6hi4djzOFxvzvPx4Lnt-SVt_cZ3z3VC_Lzy-dt961e__h61a3WtRPQTjVvQfU9uKbt1cBE4znth7ZV1FKnJYNBQ-8s05L3iOCH1jZeoUVhuRVAkV-Qq7nvEO3eHFM42PTHRBvM40JMO2PTFNw9mkGBosxqK7wSYuBaeNf6hqPu-eCFLL3ez72OKf4-YZ7MPp7SWK5vmJCNbiRVolB8plyKOSf0z6dSMOc0zJyGOadhntIoVjtbD9hHn13A0eGzCQCybTQtAZXBuzC_dxdP41TUD_-vFvpypgPiP0ozJspv4H8BWNml9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457975164</pqid></control><display><type>article</type><title>Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vinayaraj, Poliyapram ; Sugimoto, Ryu ; Nakamura, Ryosuke ; Yamaguchi, Yoshio</creator><creatorcontrib>Vinayaraj, Poliyapram ; Sugimoto, Ryu ; Nakamura, Ryosuke ; Yamaguchi, Yoshio</creatorcontrib><description>Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. However, the deep-learning-based segmentation of synthetic aperture radar images still remains a challenging task due to the unavailability of enough labeled data. In order to overcome this issue, we designed a two-step deep-learning-based transfer learning model that needs a very limited number of labeled samples. The proposed approach consists of two models. The first model is a deep encoder-decoder 6SD to Landsat-8 multispectral translation model (DTF) that translates fully polarimetric PALSAR-2 6SD data to six new features. As for the second model (transfer learning), it utilizes the DTF features to fine-tune the model using the Landsat-8 multispectral pretrained model for water/ice/land segmentation. Hereinafter, the proposed two-step model is referred to as DTF-TL. Also, a qualitative and quantitative analysis was carried out to evaluate the performance of the proposed model (DTF-TL) and compare it with various transfer learning methods. Overall, the DTF-TL model outperformed the other models with consistent and reliable water/ice/land segmentation results in terms of the recall (0.980), precision (0.981), F1-score (0.981), mean intersection over union (0.962), and accuracy (0.989).</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3031020</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>ALOS PALSAR-2 ; Artificial satellites ; Coders ; convolutional neural network (CNN) ; Data models ; deep learning ; Earth ; Earth surface ; Engineering ; Engineering, Electrical &amp; Electronic ; full-polarimetry ; Geography, Physical ; Ice ; Image processing ; Image segmentation ; Imaging Science &amp; Photographic Technology ; Landsat ; Landsat satellites ; multispectral ; Physical Geography ; Physical Sciences ; Qualitative analysis ; Radar imaging ; Radar polarimetry ; Remote Sensing ; SAR (radar) ; Satellite imagery ; Satellites ; Scattering ; scattering power decomposition ; Science &amp; Technology ; semantic segmentation ; Spaceborne remote sensing ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Technology ; Training ; Transfer learning ; transfer learning (TL) ; Water</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.6352-6361</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000587911400003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-3806bb0c78b6d247f31bd8861a1c9520d90bca2953bee0fd8a7f6eae4a3a401e3</citedby><cites>FETCH-LOGICAL-c408t-3806bb0c78b6d247f31bd8861a1c9520d90bca2953bee0fd8a7f6eae4a3a401e3</cites><orcidid>0000-0001-9872-1225 ; 0000-0002-0838-2977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,4025,27927,27928,27929</link.rule.ids></links><search><creatorcontrib>Vinayaraj, Poliyapram</creatorcontrib><creatorcontrib>Sugimoto, Ryu</creatorcontrib><creatorcontrib>Nakamura, Ryosuke</creatorcontrib><creatorcontrib>Yamaguchi, Yoshio</creatorcontrib><title>Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J-STARS</addtitle><description>Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. However, the deep-learning-based segmentation of synthetic aperture radar images still remains a challenging task due to the unavailability of enough labeled data. In order to overcome this issue, we designed a two-step deep-learning-based transfer learning model that needs a very limited number of labeled samples. The proposed approach consists of two models. The first model is a deep encoder-decoder 6SD to Landsat-8 multispectral translation model (DTF) that translates fully polarimetric PALSAR-2 6SD data to six new features. As for the second model (transfer learning), it utilizes the DTF features to fine-tune the model using the Landsat-8 multispectral pretrained model for water/ice/land segmentation. Hereinafter, the proposed two-step model is referred to as DTF-TL. Also, a qualitative and quantitative analysis was carried out to evaluate the performance of the proposed model (DTF-TL) and compare it with various transfer learning methods. Overall, the DTF-TL model outperformed the other models with consistent and reliable water/ice/land segmentation results in terms of the recall (0.980), precision (0.981), F1-score (0.981), mean intersection over union (0.962), and accuracy (0.989).</description><subject>ALOS PALSAR-2</subject><subject>Artificial satellites</subject><subject>Coders</subject><subject>convolutional neural network (CNN)</subject><subject>Data models</subject><subject>deep learning</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>full-polarimetry</subject><subject>Geography, Physical</subject><subject>Ice</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>multispectral</subject><subject>Physical Geography</subject><subject>Physical Sciences</subject><subject>Qualitative analysis</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Remote Sensing</subject><subject>SAR (radar)</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Scattering</subject><subject>scattering power decomposition</subject><subject>Science &amp; Technology</subject><subject>semantic segmentation</subject><subject>Spaceborne remote sensing</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Technology</subject><subject>Training</subject><subject>Transfer learning</subject><subject>transfer learning (TL)</subject><subject>Water</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvGyEURlHVSnXT_oJsRuqyGvfynGFpTV-prDSKXWWJGObiYsWDC2NF_ffFmSjdls1FcM4F8UHIJYUlpaA_ft9sV7ebJQMGSw6clvqCLBiVtKaSy5dkQTXXNRUgXpM3Oe8BFGs0X5C7bbJj9piqNdo0hnFX3YXpV9VdX-fKx1RtcHfAcbJTiGMVfXWzWm9WtzWrbuJDsT6hi4djzOFxvzvPx4Lnt-SVt_cZ3z3VC_Lzy-dt961e__h61a3WtRPQTjVvQfU9uKbt1cBE4znth7ZV1FKnJYNBQ-8s05L3iOCH1jZeoUVhuRVAkV-Qq7nvEO3eHFM42PTHRBvM40JMO2PTFNw9mkGBosxqK7wSYuBaeNf6hqPu-eCFLL3ez72OKf4-YZ7MPp7SWK5vmJCNbiRVolB8plyKOSf0z6dSMOc0zJyGOadhntIoVjtbD9hHn13A0eGzCQCybTQtAZXBuzC_dxdP41TUD_-vFvpypgPiP0ozJspv4H8BWNml9w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Vinayaraj, Poliyapram</creator><creator>Sugimoto, Ryu</creator><creator>Nakamura, Ryosuke</creator><creator>Yamaguchi, Yoshio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9872-1225</orcidid><orcidid>https://orcid.org/0000-0002-0838-2977</orcidid></search><sort><creationdate>2020</creationdate><title>Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components</title><author>Vinayaraj, Poliyapram ; Sugimoto, Ryu ; Nakamura, Ryosuke ; Yamaguchi, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3806bb0c78b6d247f31bd8861a1c9520d90bca2953bee0fd8a7f6eae4a3a401e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ALOS PALSAR-2</topic><topic>Artificial satellites</topic><topic>Coders</topic><topic>convolutional neural network (CNN)</topic><topic>Data models</topic><topic>deep learning</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>full-polarimetry</topic><topic>Geography, Physical</topic><topic>Ice</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>multispectral</topic><topic>Physical Geography</topic><topic>Physical Sciences</topic><topic>Qualitative analysis</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Remote Sensing</topic><topic>SAR (radar)</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Scattering</topic><topic>scattering power decomposition</topic><topic>Science &amp; Technology</topic><topic>semantic segmentation</topic><topic>Spaceborne remote sensing</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Technology</topic><topic>Training</topic><topic>Transfer learning</topic><topic>transfer learning (TL)</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinayaraj, Poliyapram</creatorcontrib><creatorcontrib>Sugimoto, Ryu</creatorcontrib><creatorcontrib>Nakamura, Ryosuke</creatorcontrib><creatorcontrib>Yamaguchi, Yoshio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinayaraj, Poliyapram</au><au>Sugimoto, Ryu</au><au>Nakamura, Ryosuke</au><au>Yamaguchi, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><stitle>IEEE J-STARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>6352</spage><epage>6361</epage><pages>6352-6361</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. However, the deep-learning-based segmentation of synthetic aperture radar images still remains a challenging task due to the unavailability of enough labeled data. In order to overcome this issue, we designed a two-step deep-learning-based transfer learning model that needs a very limited number of labeled samples. The proposed approach consists of two models. The first model is a deep encoder-decoder 6SD to Landsat-8 multispectral translation model (DTF) that translates fully polarimetric PALSAR-2 6SD data to six new features. As for the second model (transfer learning), it utilizes the DTF features to fine-tune the model using the Landsat-8 multispectral pretrained model for water/ice/land segmentation. Hereinafter, the proposed two-step model is referred to as DTF-TL. Also, a qualitative and quantitative analysis was carried out to evaluate the performance of the proposed model (DTF-TL) and compare it with various transfer learning methods. Overall, the DTF-TL model outperformed the other models with consistent and reliable water/ice/land segmentation results in terms of the recall (0.980), precision (0.981), F1-score (0.981), mean intersection over union (0.962), and accuracy (0.989).</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3031020</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9872-1225</orcidid><orcidid>https://orcid.org/0000-0002-0838-2977</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.6352-6361
issn 1939-1404
2151-1535
language eng
recordid cdi_webofscience_primary_000587911400003
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects ALOS PALSAR-2
Artificial satellites
Coders
convolutional neural network (CNN)
Data models
deep learning
Earth
Earth surface
Engineering
Engineering, Electrical & Electronic
full-polarimetry
Geography, Physical
Ice
Image processing
Image segmentation
Imaging Science & Photographic Technology
Landsat
Landsat satellites
multispectral
Physical Geography
Physical Sciences
Qualitative analysis
Radar imaging
Radar polarimetry
Remote Sensing
SAR (radar)
Satellite imagery
Satellites
Scattering
scattering power decomposition
Science & Technology
semantic segmentation
Spaceborne remote sensing
Synthetic aperture radar
synthetic aperture radar (SAR)
Technology
Training
Transfer learning
transfer learning (TL)
Water
title Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning%20With%20CNNs%20for%20Segmentation%20of%20PALSAR-2%20Power%20Decomposition%20Components&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Vinayaraj,%20Poliyapram&rft.date=2020&rft.volume=13&rft.spage=6352&rft.epage=6361&rft.pages=6352-6361&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3031020&rft_dat=%3Cproquest_webof%3E2457975164%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457975164&rft_id=info:pmid/&rft_ieee_id=9224151&rft_doaj_id=oai_doaj_org_article_d60612a9a4f644d394fc8f73e9b3df45&rfr_iscdi=true