Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components
Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. Ho...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.6352-6361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6361 |
---|---|
container_issue | |
container_start_page | 6352 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Vinayaraj, Poliyapram Sugimoto, Ryu Nakamura, Ryosuke Yamaguchi, Yoshio |
description | Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. However, the deep-learning-based segmentation of synthetic aperture radar images still remains a challenging task due to the unavailability of enough labeled data. In order to overcome this issue, we designed a two-step deep-learning-based transfer learning model that needs a very limited number of labeled samples. The proposed approach consists of two models. The first model is a deep encoder-decoder 6SD to Landsat-8 multispectral translation model (DTF) that translates fully polarimetric PALSAR-2 6SD data to six new features. As for the second model (transfer learning), it utilizes the DTF features to fine-tune the model using the Landsat-8 multispectral pretrained model for water/ice/land segmentation. Hereinafter, the proposed two-step model is referred to as DTF-TL. Also, a qualitative and quantitative analysis was carried out to evaluate the performance of the proposed model (DTF-TL) and compare it with various transfer learning methods. Overall, the DTF-TL model outperformed the other models with consistent and reliable water/ice/land segmentation results in terms of the recall (0.980), precision (0.981), F1-score (0.981), mean intersection over union (0.962), and accuracy (0.989). |
doi_str_mv | 10.1109/JSTARS.2020.3031020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000587911400003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9224151</ieee_id><doaj_id>oai_doaj_org_article_d60612a9a4f644d394fc8f73e9b3df45</doaj_id><sourcerecordid>2457975164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3806bb0c78b6d247f31bd8861a1c9520d90bca2953bee0fd8a7f6eae4a3a401e3</originalsourceid><addsrcrecordid>eNqNkktvGyEURlHVSnXT_oJsRuqyGvfynGFpTV-prDSKXWWJGObiYsWDC2NF_ffFmSjdls1FcM4F8UHIJYUlpaA_ft9sV7ebJQMGSw6clvqCLBiVtKaSy5dkQTXXNRUgXpM3Oe8BFGs0X5C7bbJj9piqNdo0hnFX3YXpV9VdX-fKx1RtcHfAcbJTiGMVfXWzWm9WtzWrbuJDsT6hi4djzOFxvzvPx4Lnt-SVt_cZ3z3VC_Lzy-dt961e__h61a3WtRPQTjVvQfU9uKbt1cBE4znth7ZV1FKnJYNBQ-8s05L3iOCH1jZeoUVhuRVAkV-Qq7nvEO3eHFM42PTHRBvM40JMO2PTFNw9mkGBosxqK7wSYuBaeNf6hqPu-eCFLL3ez72OKf4-YZ7MPp7SWK5vmJCNbiRVolB8plyKOSf0z6dSMOc0zJyGOadhntIoVjtbD9hHn13A0eGzCQCybTQtAZXBuzC_dxdP41TUD_-vFvpypgPiP0ozJspv4H8BWNml9w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457975164</pqid></control><display><type>article</type><title>Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vinayaraj, Poliyapram ; Sugimoto, Ryu ; Nakamura, Ryosuke ; Yamaguchi, Yoshio</creator><creatorcontrib>Vinayaraj, Poliyapram ; Sugimoto, Ryu ; Nakamura, Ryosuke ; Yamaguchi, Yoshio</creatorcontrib><description>Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. However, the deep-learning-based segmentation of synthetic aperture radar images still remains a challenging task due to the unavailability of enough labeled data. In order to overcome this issue, we designed a two-step deep-learning-based transfer learning model that needs a very limited number of labeled samples. The proposed approach consists of two models. The first model is a deep encoder-decoder 6SD to Landsat-8 multispectral translation model (DTF) that translates fully polarimetric PALSAR-2 6SD data to six new features. As for the second model (transfer learning), it utilizes the DTF features to fine-tune the model using the Landsat-8 multispectral pretrained model for water/ice/land segmentation. Hereinafter, the proposed two-step model is referred to as DTF-TL. Also, a qualitative and quantitative analysis was carried out to evaluate the performance of the proposed model (DTF-TL) and compare it with various transfer learning methods. Overall, the DTF-TL model outperformed the other models with consistent and reliable water/ice/land segmentation results in terms of the recall (0.980), precision (0.981), F1-score (0.981), mean intersection over union (0.962), and accuracy (0.989).</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3031020</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>ALOS PALSAR-2 ; Artificial satellites ; Coders ; convolutional neural network (CNN) ; Data models ; deep learning ; Earth ; Earth surface ; Engineering ; Engineering, Electrical & Electronic ; full-polarimetry ; Geography, Physical ; Ice ; Image processing ; Image segmentation ; Imaging Science & Photographic Technology ; Landsat ; Landsat satellites ; multispectral ; Physical Geography ; Physical Sciences ; Qualitative analysis ; Radar imaging ; Radar polarimetry ; Remote Sensing ; SAR (radar) ; Satellite imagery ; Satellites ; Scattering ; scattering power decomposition ; Science & Technology ; semantic segmentation ; Spaceborne remote sensing ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Technology ; Training ; Transfer learning ; transfer learning (TL) ; Water</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.6352-6361</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000587911400003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-3806bb0c78b6d247f31bd8861a1c9520d90bca2953bee0fd8a7f6eae4a3a401e3</citedby><cites>FETCH-LOGICAL-c408t-3806bb0c78b6d247f31bd8861a1c9520d90bca2953bee0fd8a7f6eae4a3a401e3</cites><orcidid>0000-0001-9872-1225 ; 0000-0002-0838-2977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,4025,27927,27928,27929</link.rule.ids></links><search><creatorcontrib>Vinayaraj, Poliyapram</creatorcontrib><creatorcontrib>Sugimoto, Ryu</creatorcontrib><creatorcontrib>Nakamura, Ryosuke</creatorcontrib><creatorcontrib>Yamaguchi, Yoshio</creatorcontrib><title>Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J-STARS</addtitle><description>Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. However, the deep-learning-based segmentation of synthetic aperture radar images still remains a challenging task due to the unavailability of enough labeled data. In order to overcome this issue, we designed a two-step deep-learning-based transfer learning model that needs a very limited number of labeled samples. The proposed approach consists of two models. The first model is a deep encoder-decoder 6SD to Landsat-8 multispectral translation model (DTF) that translates fully polarimetric PALSAR-2 6SD data to six new features. As for the second model (transfer learning), it utilizes the DTF features to fine-tune the model using the Landsat-8 multispectral pretrained model for water/ice/land segmentation. Hereinafter, the proposed two-step model is referred to as DTF-TL. Also, a qualitative and quantitative analysis was carried out to evaluate the performance of the proposed model (DTF-TL) and compare it with various transfer learning methods. Overall, the DTF-TL model outperformed the other models with consistent and reliable water/ice/land segmentation results in terms of the recall (0.980), precision (0.981), F1-score (0.981), mean intersection over union (0.962), and accuracy (0.989).</description><subject>ALOS PALSAR-2</subject><subject>Artificial satellites</subject><subject>Coders</subject><subject>convolutional neural network (CNN)</subject><subject>Data models</subject><subject>deep learning</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>full-polarimetry</subject><subject>Geography, Physical</subject><subject>Ice</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imaging Science & Photographic Technology</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>multispectral</subject><subject>Physical Geography</subject><subject>Physical Sciences</subject><subject>Qualitative analysis</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Remote Sensing</subject><subject>SAR (radar)</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Scattering</subject><subject>scattering power decomposition</subject><subject>Science & Technology</subject><subject>semantic segmentation</subject><subject>Spaceborne remote sensing</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Technology</subject><subject>Training</subject><subject>Transfer learning</subject><subject>transfer learning (TL)</subject><subject>Water</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvGyEURlHVSnXT_oJsRuqyGvfynGFpTV-prDSKXWWJGObiYsWDC2NF_ffFmSjdls1FcM4F8UHIJYUlpaA_ft9sV7ebJQMGSw6clvqCLBiVtKaSy5dkQTXXNRUgXpM3Oe8BFGs0X5C7bbJj9piqNdo0hnFX3YXpV9VdX-fKx1RtcHfAcbJTiGMVfXWzWm9WtzWrbuJDsT6hi4djzOFxvzvPx4Lnt-SVt_cZ3z3VC_Lzy-dt961e__h61a3WtRPQTjVvQfU9uKbt1cBE4znth7ZV1FKnJYNBQ-8s05L3iOCH1jZeoUVhuRVAkV-Qq7nvEO3eHFM42PTHRBvM40JMO2PTFNw9mkGBosxqK7wSYuBaeNf6hqPu-eCFLL3ez72OKf4-YZ7MPp7SWK5vmJCNbiRVolB8plyKOSf0z6dSMOc0zJyGOadhntIoVjtbD9hHn13A0eGzCQCybTQtAZXBuzC_dxdP41TUD_-vFvpypgPiP0ozJspv4H8BWNml9w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Vinayaraj, Poliyapram</creator><creator>Sugimoto, Ryu</creator><creator>Nakamura, Ryosuke</creator><creator>Yamaguchi, Yoshio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9872-1225</orcidid><orcidid>https://orcid.org/0000-0002-0838-2977</orcidid></search><sort><creationdate>2020</creationdate><title>Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components</title><author>Vinayaraj, Poliyapram ; Sugimoto, Ryu ; Nakamura, Ryosuke ; Yamaguchi, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3806bb0c78b6d247f31bd8861a1c9520d90bca2953bee0fd8a7f6eae4a3a401e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ALOS PALSAR-2</topic><topic>Artificial satellites</topic><topic>Coders</topic><topic>convolutional neural network (CNN)</topic><topic>Data models</topic><topic>deep learning</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>full-polarimetry</topic><topic>Geography, Physical</topic><topic>Ice</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imaging Science & Photographic Technology</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>multispectral</topic><topic>Physical Geography</topic><topic>Physical Sciences</topic><topic>Qualitative analysis</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Remote Sensing</topic><topic>SAR (radar)</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Scattering</topic><topic>scattering power decomposition</topic><topic>Science & Technology</topic><topic>semantic segmentation</topic><topic>Spaceborne remote sensing</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Technology</topic><topic>Training</topic><topic>Transfer learning</topic><topic>transfer learning (TL)</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinayaraj, Poliyapram</creatorcontrib><creatorcontrib>Sugimoto, Ryu</creatorcontrib><creatorcontrib>Nakamura, Ryosuke</creatorcontrib><creatorcontrib>Yamaguchi, Yoshio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinayaraj, Poliyapram</au><au>Sugimoto, Ryu</au><au>Nakamura, Ryosuke</au><au>Yamaguchi, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><stitle>IEEE J-STARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>6352</spage><epage>6361</epage><pages>6352-6361</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Water/ice/land region segmentation is an important task for remote sensing, as it analyses the occurrence of water or ice on the earth's surface. Many previous deep learning researches effectively utilized multispectral satellite images for highly accurate water/ice/land region segmentation. However, the deep-learning-based segmentation of synthetic aperture radar images still remains a challenging task due to the unavailability of enough labeled data. In order to overcome this issue, we designed a two-step deep-learning-based transfer learning model that needs a very limited number of labeled samples. The proposed approach consists of two models. The first model is a deep encoder-decoder 6SD to Landsat-8 multispectral translation model (DTF) that translates fully polarimetric PALSAR-2 6SD data to six new features. As for the second model (transfer learning), it utilizes the DTF features to fine-tune the model using the Landsat-8 multispectral pretrained model for water/ice/land segmentation. Hereinafter, the proposed two-step model is referred to as DTF-TL. Also, a qualitative and quantitative analysis was carried out to evaluate the performance of the proposed model (DTF-TL) and compare it with various transfer learning methods. Overall, the DTF-TL model outperformed the other models with consistent and reliable water/ice/land segmentation results in terms of the recall (0.980), precision (0.981), F1-score (0.981), mean intersection over union (0.962), and accuracy (0.989).</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3031020</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9872-1225</orcidid><orcidid>https://orcid.org/0000-0002-0838-2977</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.6352-6361 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_webofscience_primary_000587911400003 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | ALOS PALSAR-2 Artificial satellites Coders convolutional neural network (CNN) Data models deep learning Earth Earth surface Engineering Engineering, Electrical & Electronic full-polarimetry Geography, Physical Ice Image processing Image segmentation Imaging Science & Photographic Technology Landsat Landsat satellites multispectral Physical Geography Physical Sciences Qualitative analysis Radar imaging Radar polarimetry Remote Sensing SAR (radar) Satellite imagery Satellites Scattering scattering power decomposition Science & Technology semantic segmentation Spaceborne remote sensing Synthetic aperture radar synthetic aperture radar (SAR) Technology Training Transfer learning transfer learning (TL) Water |
title | Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning%20With%20CNNs%20for%20Segmentation%20of%20PALSAR-2%20Power%20Decomposition%20Components&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Vinayaraj,%20Poliyapram&rft.date=2020&rft.volume=13&rft.spage=6352&rft.epage=6361&rft.pages=6352-6361&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3031020&rft_dat=%3Cproquest_webof%3E2457975164%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457975164&rft_id=info:pmid/&rft_ieee_id=9224151&rft_doaj_id=oai_doaj_org_article_d60612a9a4f644d394fc8f73e9b3df45&rfr_iscdi=true |