Microstructure and Crystallographic Texture Changes under Torsion Loading of Pearlitic Steel Strips
Cold-drawn pearlitic steel strips exhibit a great combination of strength and ductility and are widely used in many engineering applications. Some of these applications require further mechanical conformation for the final use. An analysis of the microstructure and the change in crystallographic tex...
Gespeichert in:
Veröffentlicht in: | Journal of materials engineering and performance 2020-11, Vol.29 (11), p.7250-7259 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cold-drawn pearlitic steel strips exhibit a great combination of strength and ductility and are widely used in many engineering applications. Some of these applications require further mechanical conformation for the final use. An analysis of the microstructure and the change in crystallographic texture when strips are subjected to torsion processes necessary for some applications was made in the current study. It was shown that the formation of the wavy pearlite morphology associated with the fiber texture parallel to the drawing axis could improve fatigue damage. Extreme dislocation densities and crystallographic defects induced by torsion enhanced the formation of ultrafine ferritic grains accompanied by partial cementite decomposition. The relationship between ferrite and cementite interfaces successfully simulated using the Shackleton model. |
---|---|
ISSN: | 1059-9495 1544-1024 |
DOI: | 10.1007/s11665-020-05232-8 |