Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment

The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocata...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2020-10, Vol.10 (10), p.276, Article 276
Hauptverfasser: Zeitoun, Zeyad, El-Shazly, Ahmed H., Nosier, Shaaban, Elmarghany, Mohamed R., Salem, Mohamed S., Taha, Mahmoud M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 276
container_title Membranes (Basel)
container_volume 10
creator Zeitoun, Zeyad
El-Shazly, Ahmed H.
Nosier, Shaaban
Elmarghany, Mohamed R.
Salem, Mohamed S.
Taha, Mahmoud M.
description The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction.
doi_str_mv 10.3390/membranes10100276
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000585380100001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b65b10af3ada4bb3be7639d1d08781cc</doaj_id><sourcerecordid>2451137408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-288f50b566b6410120079f9d868a74bed8620de8a420654f3705c7737263ee3f3</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhhdRbKn9Ad4teCPI0clm87E3Qjm0WqxYpOJlmGRn25TdTU2yLf335vQcitUbc5Mw88zLzOStqtcM3nPewYeJJhtxpsSAATRKPqv2G1BqBVyJ53-896rDlK6hHAlCcnhZ7XEObdc1er8azikOIU44O6qPb3FcMPsw1zj39Rc_U_auPppxvE8-1WGoz69CDg5ziWxSX3dN1N8JXQ6x9nP9E1OmO8wU64tImCea86vqxYBjosPdfVD9ODm-WH9enX37dLo-Olu5VkFeNVoPAqyQ0sq2zNUAqG7oei01qtZSeTTQk8a2ASnagSsQTimuGsmJ-MAPqtOtbh_w2txEP2G8NwG9eQiEeGkwlsZHMlYKywAHjj221nJLSvKuZz1opZlzRevjVutmsRP1rowRcXwi-jQz-ytzGW6NksCEEEXg7U4ghl8LpWwmnxyNY1lYWJJpWsEYVy3ogr75C70OSyx7L5RodSc1Y6pQbEu5GFKKNDw2w8BsTGH-MUWpebetuSMbhuQ8lZ9-rCumEFpwvaEBWKH1_9Nrnx_Msg7LnPlvnXfL7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548968117</pqid></control><display><type>article</type><title>Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Zeitoun, Zeyad ; El-Shazly, Ahmed H. ; Nosier, Shaaban ; Elmarghany, Mohamed R. ; Salem, Mohamed S. ; Taha, Mahmoud M.</creator><creatorcontrib>Zeitoun, Zeyad ; El-Shazly, Ahmed H. ; Nosier, Shaaban ; Elmarghany, Mohamed R. ; Salem, Mohamed S. ; Taha, Mahmoud M.</creatorcontrib><description>The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes10100276</identifier><identifier>PMID: 33049928</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Biochemistry &amp; Molecular Biology ; Chemistry ; Chemistry, Physical ; Color removal ; Contact angle ; Contact potentials ; Continuously stirred tank reactors ; Distillation ; Dye industry wastes ; Dyes ; Engineering ; Engineering, Chemical ; Fluorides ; Hydrophobicity ; Industrial wastes ; Irradiation ; Life Sciences &amp; Biomedicine ; Materials Science ; Materials Science, Multidisciplinary ; membrane distillation ; Membrane reactors ; Membrane separation ; Membranes ; Methods ; Morphology ; Nanoparticles ; Particle size ; Performance evaluation ; Photocatalysis ; photocatalytic membrane reactor ; Photodegradation ; Physical Sciences ; Pollutants ; Polymer Science ; polyvinylidene fluoride (PVDF) ; Reactors ; Scanning electron microscopy ; Science &amp; Technology ; Slurries ; Slurry reactors ; Surface charge ; Technology ; Titanium dioxide ; Ultraviolet radiation ; Vinylidene ; Waste treatment ; Wastewater treatment ; Water treatment ; Zeta potential</subject><ispartof>Membranes (Basel), 2020-10, Vol.10 (10), p.276, Article 276</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000585380100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c470t-288f50b566b6410120079f9d868a74bed8620de8a420654f3705c7737263ee3f3</citedby><cites>FETCH-LOGICAL-c470t-288f50b566b6410120079f9d868a74bed8620de8a420654f3705c7737263ee3f3</cites><orcidid>0000-0002-6915-3772 ; 0000-0002-1193-8294 ; 0000-0002-2174-7790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601555/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601555/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,53798,53800</link.rule.ids></links><search><creatorcontrib>Zeitoun, Zeyad</creatorcontrib><creatorcontrib>El-Shazly, Ahmed H.</creatorcontrib><creatorcontrib>Nosier, Shaaban</creatorcontrib><creatorcontrib>Elmarghany, Mohamed R.</creatorcontrib><creatorcontrib>Salem, Mohamed S.</creatorcontrib><creatorcontrib>Taha, Mahmoud M.</creatorcontrib><title>Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment</title><title>Membranes (Basel)</title><addtitle>MEMBRANES-BASEL</addtitle><description>The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction.</description><subject>Biochemistry &amp; Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Color removal</subject><subject>Contact angle</subject><subject>Contact potentials</subject><subject>Continuously stirred tank reactors</subject><subject>Distillation</subject><subject>Dye industry wastes</subject><subject>Dyes</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Fluorides</subject><subject>Hydrophobicity</subject><subject>Industrial wastes</subject><subject>Irradiation</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>membrane distillation</subject><subject>Membrane reactors</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Methods</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Performance evaluation</subject><subject>Photocatalysis</subject><subject>photocatalytic membrane reactor</subject><subject>Photodegradation</subject><subject>Physical Sciences</subject><subject>Pollutants</subject><subject>Polymer Science</subject><subject>polyvinylidene fluoride (PVDF)</subject><subject>Reactors</subject><subject>Scanning electron microscopy</subject><subject>Science &amp; Technology</subject><subject>Slurries</subject><subject>Slurry reactors</subject><subject>Surface charge</subject><subject>Technology</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><subject>Vinylidene</subject><subject>Waste treatment</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><subject>Zeta potential</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFTEQhhdRbKn9Ad4teCPI0clm87E3Qjm0WqxYpOJlmGRn25TdTU2yLf335vQcitUbc5Mw88zLzOStqtcM3nPewYeJJhtxpsSAATRKPqv2G1BqBVyJ53-896rDlK6hHAlCcnhZ7XEObdc1er8azikOIU44O6qPb3FcMPsw1zj39Rc_U_auPppxvE8-1WGoz69CDg5ziWxSX3dN1N8JXQ6x9nP9E1OmO8wU64tImCea86vqxYBjosPdfVD9ODm-WH9enX37dLo-Olu5VkFeNVoPAqyQ0sq2zNUAqG7oei01qtZSeTTQk8a2ASnagSsQTimuGsmJ-MAPqtOtbh_w2txEP2G8NwG9eQiEeGkwlsZHMlYKywAHjj221nJLSvKuZz1opZlzRevjVutmsRP1rowRcXwi-jQz-ytzGW6NksCEEEXg7U4ghl8LpWwmnxyNY1lYWJJpWsEYVy3ogr75C70OSyx7L5RodSc1Y6pQbEu5GFKKNDw2w8BsTGH-MUWpebetuSMbhuQ8lZ9-rCumEFpwvaEBWKH1_9Nrnx_Msg7LnPlvnXfL7Q</recordid><startdate>20201008</startdate><enddate>20201008</enddate><creator>Zeitoun, Zeyad</creator><creator>El-Shazly, Ahmed H.</creator><creator>Nosier, Shaaban</creator><creator>Elmarghany, Mohamed R.</creator><creator>Salem, Mohamed S.</creator><creator>Taha, Mahmoud M.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6915-3772</orcidid><orcidid>https://orcid.org/0000-0002-1193-8294</orcidid><orcidid>https://orcid.org/0000-0002-2174-7790</orcidid></search><sort><creationdate>20201008</creationdate><title>Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment</title><author>Zeitoun, Zeyad ; El-Shazly, Ahmed H. ; Nosier, Shaaban ; Elmarghany, Mohamed R. ; Salem, Mohamed S. ; Taha, Mahmoud M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-288f50b566b6410120079f9d868a74bed8620de8a420654f3705c7737263ee3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry &amp; Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Color removal</topic><topic>Contact angle</topic><topic>Contact potentials</topic><topic>Continuously stirred tank reactors</topic><topic>Distillation</topic><topic>Dye industry wastes</topic><topic>Dyes</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Fluorides</topic><topic>Hydrophobicity</topic><topic>Industrial wastes</topic><topic>Irradiation</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>membrane distillation</topic><topic>Membrane reactors</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Methods</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Performance evaluation</topic><topic>Photocatalysis</topic><topic>photocatalytic membrane reactor</topic><topic>Photodegradation</topic><topic>Physical Sciences</topic><topic>Pollutants</topic><topic>Polymer Science</topic><topic>polyvinylidene fluoride (PVDF)</topic><topic>Reactors</topic><topic>Scanning electron microscopy</topic><topic>Science &amp; Technology</topic><topic>Slurries</topic><topic>Slurry reactors</topic><topic>Surface charge</topic><topic>Technology</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><topic>Vinylidene</topic><topic>Waste treatment</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeitoun, Zeyad</creatorcontrib><creatorcontrib>El-Shazly, Ahmed H.</creatorcontrib><creatorcontrib>Nosier, Shaaban</creatorcontrib><creatorcontrib>Elmarghany, Mohamed R.</creatorcontrib><creatorcontrib>Salem, Mohamed S.</creatorcontrib><creatorcontrib>Taha, Mahmoud M.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeitoun, Zeyad</au><au>El-Shazly, Ahmed H.</au><au>Nosier, Shaaban</au><au>Elmarghany, Mohamed R.</au><au>Salem, Mohamed S.</au><au>Taha, Mahmoud M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment</atitle><jtitle>Membranes (Basel)</jtitle><stitle>MEMBRANES-BASEL</stitle><date>2020-10-08</date><risdate>2020</risdate><volume>10</volume><issue>10</issue><spage>276</spage><pages>276-</pages><artnum>276</artnum><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33049928</pmid><doi>10.3390/membranes10100276</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6915-3772</orcidid><orcidid>https://orcid.org/0000-0002-1193-8294</orcidid><orcidid>https://orcid.org/0000-0002-2174-7790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes (Basel), 2020-10, Vol.10 (10), p.276, Article 276
issn 2077-0375
2077-0375
language eng
recordid cdi_webofscience_primary_000585380100001
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Biochemistry & Molecular Biology
Chemistry
Chemistry, Physical
Color removal
Contact angle
Contact potentials
Continuously stirred tank reactors
Distillation
Dye industry wastes
Dyes
Engineering
Engineering, Chemical
Fluorides
Hydrophobicity
Industrial wastes
Irradiation
Life Sciences & Biomedicine
Materials Science
Materials Science, Multidisciplinary
membrane distillation
Membrane reactors
Membrane separation
Membranes
Methods
Morphology
Nanoparticles
Particle size
Performance evaluation
Photocatalysis
photocatalytic membrane reactor
Photodegradation
Physical Sciences
Pollutants
Polymer Science
polyvinylidene fluoride (PVDF)
Reactors
Scanning electron microscopy
Science & Technology
Slurries
Slurry reactors
Surface charge
Technology
Titanium dioxide
Ultraviolet radiation
Vinylidene
Waste treatment
Wastewater treatment
Water treatment
Zeta potential
title Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Evaluation%20and%20Kinetic%20Analysis%20of%20Photocatalytic%20Membrane%20Reactor%20in%20Wastewater%20Treatment&rft.jtitle=Membranes%20(Basel)&rft.au=Zeitoun,%20Zeyad&rft.date=2020-10-08&rft.volume=10&rft.issue=10&rft.spage=276&rft.pages=276-&rft.artnum=276&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes10100276&rft_dat=%3Cproquest_webof%3E2451137408%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548968117&rft_id=info:pmid/33049928&rft_doaj_id=oai_doaj_org_article_b65b10af3ada4bb3be7639d1d08781cc&rfr_iscdi=true