Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment
The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocata...
Gespeichert in:
Veröffentlicht in: | Membranes (Basel) 2020-10, Vol.10 (10), p.276, Article 276 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 276 |
container_title | Membranes (Basel) |
container_volume | 10 |
creator | Zeitoun, Zeyad El-Shazly, Ahmed H. Nosier, Shaaban Elmarghany, Mohamed R. Salem, Mohamed S. Taha, Mahmoud M. |
description | The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction. |
doi_str_mv | 10.3390/membranes10100276 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000585380100001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b65b10af3ada4bb3be7639d1d08781cc</doaj_id><sourcerecordid>2451137408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-288f50b566b6410120079f9d868a74bed8620de8a420654f3705c7737263ee3f3</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhhdRbKn9Ad4teCPI0clm87E3Qjm0WqxYpOJlmGRn25TdTU2yLf335vQcitUbc5Mw88zLzOStqtcM3nPewYeJJhtxpsSAATRKPqv2G1BqBVyJ53-896rDlK6hHAlCcnhZ7XEObdc1er8azikOIU44O6qPb3FcMPsw1zj39Rc_U_auPppxvE8-1WGoz69CDg5ziWxSX3dN1N8JXQ6x9nP9E1OmO8wU64tImCea86vqxYBjosPdfVD9ODm-WH9enX37dLo-Olu5VkFeNVoPAqyQ0sq2zNUAqG7oei01qtZSeTTQk8a2ASnagSsQTimuGsmJ-MAPqtOtbh_w2txEP2G8NwG9eQiEeGkwlsZHMlYKywAHjj221nJLSvKuZz1opZlzRevjVutmsRP1rowRcXwi-jQz-ytzGW6NksCEEEXg7U4ghl8LpWwmnxyNY1lYWJJpWsEYVy3ogr75C70OSyx7L5RodSc1Y6pQbEu5GFKKNDw2w8BsTGH-MUWpebetuSMbhuQ8lZ9-rCumEFpwvaEBWKH1_9Nrnx_Msg7LnPlvnXfL7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548968117</pqid></control><display><type>article</type><title>Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Zeitoun, Zeyad ; El-Shazly, Ahmed H. ; Nosier, Shaaban ; Elmarghany, Mohamed R. ; Salem, Mohamed S. ; Taha, Mahmoud M.</creator><creatorcontrib>Zeitoun, Zeyad ; El-Shazly, Ahmed H. ; Nosier, Shaaban ; Elmarghany, Mohamed R. ; Salem, Mohamed S. ; Taha, Mahmoud M.</creatorcontrib><description>The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes10100276</identifier><identifier>PMID: 33049928</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Biochemistry & Molecular Biology ; Chemistry ; Chemistry, Physical ; Color removal ; Contact angle ; Contact potentials ; Continuously stirred tank reactors ; Distillation ; Dye industry wastes ; Dyes ; Engineering ; Engineering, Chemical ; Fluorides ; Hydrophobicity ; Industrial wastes ; Irradiation ; Life Sciences & Biomedicine ; Materials Science ; Materials Science, Multidisciplinary ; membrane distillation ; Membrane reactors ; Membrane separation ; Membranes ; Methods ; Morphology ; Nanoparticles ; Particle size ; Performance evaluation ; Photocatalysis ; photocatalytic membrane reactor ; Photodegradation ; Physical Sciences ; Pollutants ; Polymer Science ; polyvinylidene fluoride (PVDF) ; Reactors ; Scanning electron microscopy ; Science & Technology ; Slurries ; Slurry reactors ; Surface charge ; Technology ; Titanium dioxide ; Ultraviolet radiation ; Vinylidene ; Waste treatment ; Wastewater treatment ; Water treatment ; Zeta potential</subject><ispartof>Membranes (Basel), 2020-10, Vol.10 (10), p.276, Article 276</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000585380100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c470t-288f50b566b6410120079f9d868a74bed8620de8a420654f3705c7737263ee3f3</citedby><cites>FETCH-LOGICAL-c470t-288f50b566b6410120079f9d868a74bed8620de8a420654f3705c7737263ee3f3</cites><orcidid>0000-0002-6915-3772 ; 0000-0002-1193-8294 ; 0000-0002-2174-7790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601555/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601555/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,28255,53798,53800</link.rule.ids></links><search><creatorcontrib>Zeitoun, Zeyad</creatorcontrib><creatorcontrib>El-Shazly, Ahmed H.</creatorcontrib><creatorcontrib>Nosier, Shaaban</creatorcontrib><creatorcontrib>Elmarghany, Mohamed R.</creatorcontrib><creatorcontrib>Salem, Mohamed S.</creatorcontrib><creatorcontrib>Taha, Mahmoud M.</creatorcontrib><title>Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment</title><title>Membranes (Basel)</title><addtitle>MEMBRANES-BASEL</addtitle><description>The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction.</description><subject>Biochemistry & Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Color removal</subject><subject>Contact angle</subject><subject>Contact potentials</subject><subject>Continuously stirred tank reactors</subject><subject>Distillation</subject><subject>Dye industry wastes</subject><subject>Dyes</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Fluorides</subject><subject>Hydrophobicity</subject><subject>Industrial wastes</subject><subject>Irradiation</subject><subject>Life Sciences & Biomedicine</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>membrane distillation</subject><subject>Membrane reactors</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Methods</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Performance evaluation</subject><subject>Photocatalysis</subject><subject>photocatalytic membrane reactor</subject><subject>Photodegradation</subject><subject>Physical Sciences</subject><subject>Pollutants</subject><subject>Polymer Science</subject><subject>polyvinylidene fluoride (PVDF)</subject><subject>Reactors</subject><subject>Scanning electron microscopy</subject><subject>Science & Technology</subject><subject>Slurries</subject><subject>Slurry reactors</subject><subject>Surface charge</subject><subject>Technology</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><subject>Vinylidene</subject><subject>Waste treatment</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><subject>Zeta potential</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFTEQhhdRbKn9Ad4teCPI0clm87E3Qjm0WqxYpOJlmGRn25TdTU2yLf335vQcitUbc5Mw88zLzOStqtcM3nPewYeJJhtxpsSAATRKPqv2G1BqBVyJ53-896rDlK6hHAlCcnhZ7XEObdc1er8azikOIU44O6qPb3FcMPsw1zj39Rc_U_auPppxvE8-1WGoz69CDg5ziWxSX3dN1N8JXQ6x9nP9E1OmO8wU64tImCea86vqxYBjosPdfVD9ODm-WH9enX37dLo-Olu5VkFeNVoPAqyQ0sq2zNUAqG7oei01qtZSeTTQk8a2ASnagSsQTimuGsmJ-MAPqtOtbh_w2txEP2G8NwG9eQiEeGkwlsZHMlYKywAHjj221nJLSvKuZz1opZlzRevjVutmsRP1rowRcXwi-jQz-ytzGW6NksCEEEXg7U4ghl8LpWwmnxyNY1lYWJJpWsEYVy3ogr75C70OSyx7L5RodSc1Y6pQbEu5GFKKNDw2w8BsTGH-MUWpebetuSMbhuQ8lZ9-rCumEFpwvaEBWKH1_9Nrnx_Msg7LnPlvnXfL7Q</recordid><startdate>20201008</startdate><enddate>20201008</enddate><creator>Zeitoun, Zeyad</creator><creator>El-Shazly, Ahmed H.</creator><creator>Nosier, Shaaban</creator><creator>Elmarghany, Mohamed R.</creator><creator>Salem, Mohamed S.</creator><creator>Taha, Mahmoud M.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6915-3772</orcidid><orcidid>https://orcid.org/0000-0002-1193-8294</orcidid><orcidid>https://orcid.org/0000-0002-2174-7790</orcidid></search><sort><creationdate>20201008</creationdate><title>Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment</title><author>Zeitoun, Zeyad ; El-Shazly, Ahmed H. ; Nosier, Shaaban ; Elmarghany, Mohamed R. ; Salem, Mohamed S. ; Taha, Mahmoud M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-288f50b566b6410120079f9d868a74bed8620de8a420654f3705c7737263ee3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemistry & Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Color removal</topic><topic>Contact angle</topic><topic>Contact potentials</topic><topic>Continuously stirred tank reactors</topic><topic>Distillation</topic><topic>Dye industry wastes</topic><topic>Dyes</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Fluorides</topic><topic>Hydrophobicity</topic><topic>Industrial wastes</topic><topic>Irradiation</topic><topic>Life Sciences & Biomedicine</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>membrane distillation</topic><topic>Membrane reactors</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Methods</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Performance evaluation</topic><topic>Photocatalysis</topic><topic>photocatalytic membrane reactor</topic><topic>Photodegradation</topic><topic>Physical Sciences</topic><topic>Pollutants</topic><topic>Polymer Science</topic><topic>polyvinylidene fluoride (PVDF)</topic><topic>Reactors</topic><topic>Scanning electron microscopy</topic><topic>Science & Technology</topic><topic>Slurries</topic><topic>Slurry reactors</topic><topic>Surface charge</topic><topic>Technology</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><topic>Vinylidene</topic><topic>Waste treatment</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeitoun, Zeyad</creatorcontrib><creatorcontrib>El-Shazly, Ahmed H.</creatorcontrib><creatorcontrib>Nosier, Shaaban</creatorcontrib><creatorcontrib>Elmarghany, Mohamed R.</creatorcontrib><creatorcontrib>Salem, Mohamed S.</creatorcontrib><creatorcontrib>Taha, Mahmoud M.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeitoun, Zeyad</au><au>El-Shazly, Ahmed H.</au><au>Nosier, Shaaban</au><au>Elmarghany, Mohamed R.</au><au>Salem, Mohamed S.</au><au>Taha, Mahmoud M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment</atitle><jtitle>Membranes (Basel)</jtitle><stitle>MEMBRANES-BASEL</stitle><date>2020-10-08</date><risdate>2020</risdate><volume>10</volume><issue>10</issue><spage>276</spage><pages>276-</pages><artnum>276</artnum><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33049928</pmid><doi>10.3390/membranes10100276</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6915-3772</orcidid><orcidid>https://orcid.org/0000-0002-1193-8294</orcidid><orcidid>https://orcid.org/0000-0002-2174-7790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0375 |
ispartof | Membranes (Basel), 2020-10, Vol.10 (10), p.276, Article 276 |
issn | 2077-0375 2077-0375 |
language | eng |
recordid | cdi_webofscience_primary_000585380100001 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Biochemistry & Molecular Biology Chemistry Chemistry, Physical Color removal Contact angle Contact potentials Continuously stirred tank reactors Distillation Dye industry wastes Dyes Engineering Engineering, Chemical Fluorides Hydrophobicity Industrial wastes Irradiation Life Sciences & Biomedicine Materials Science Materials Science, Multidisciplinary membrane distillation Membrane reactors Membrane separation Membranes Methods Morphology Nanoparticles Particle size Performance evaluation Photocatalysis photocatalytic membrane reactor Photodegradation Physical Sciences Pollutants Polymer Science polyvinylidene fluoride (PVDF) Reactors Scanning electron microscopy Science & Technology Slurries Slurry reactors Surface charge Technology Titanium dioxide Ultraviolet radiation Vinylidene Waste treatment Wastewater treatment Water treatment Zeta potential |
title | Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Evaluation%20and%20Kinetic%20Analysis%20of%20Photocatalytic%20Membrane%20Reactor%20in%20Wastewater%20Treatment&rft.jtitle=Membranes%20(Basel)&rft.au=Zeitoun,%20Zeyad&rft.date=2020-10-08&rft.volume=10&rft.issue=10&rft.spage=276&rft.pages=276-&rft.artnum=276&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes10100276&rft_dat=%3Cproquest_webof%3E2451137408%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548968117&rft_id=info:pmid/33049928&rft_doaj_id=oai_doaj_org_article_b65b10af3ada4bb3be7639d1d08781cc&rfr_iscdi=true |