Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks

We propose an experimental methodology to visualize asphaltene precipitation in the pore space of rocks and assess the reduction in permeability. We perform core flooding experiments integrated with X-ray microtomography (micro-CT). The simultaneous injection of pure heptane and crude oil containing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2021-01, Vol.283, p.118871, Article 118871
Hauptverfasser: Lin, Qingyang, Akai, Takashi, Blunt, Martin J., Bijeljic, Branko, Iwama, Hiroki, Takabayashi, Katsumo, Onaka, Yutaka, Yonebayashi, Hideharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118871
container_title Fuel (Guildford)
container_volume 283
creator Lin, Qingyang
Akai, Takashi
Blunt, Martin J.
Bijeljic, Branko
Iwama, Hiroki
Takabayashi, Katsumo
Onaka, Yutaka
Yonebayashi, Hideharu
description We propose an experimental methodology to visualize asphaltene precipitation in the pore space of rocks and assess the reduction in permeability. We perform core flooding experiments integrated with X-ray microtomography (micro-CT). The simultaneous injection of pure heptane and crude oil containing asphaltene induces the precipitation of asphaltene in the pore space. The degree of precipitation is controlled by the measurement of differential pressure across the sample. After precipitation, doped heptane is injected to replace the fluid to enhance the contrast between precipitated asphaltene and doped heptane. The micro-CT images are segmented into three phases: void, precipitated asphaltene, and rock. In the experiment, we observed that the precipitated asphaltene which occupied 39.1% of the pore volume caused a 29-fold reduction in permeability. Furthermore, we analyze the spatial distribution of precipitated asphaltene which showed that the asphaltene tended to clog the larger pores. We also computed the flow field numerically on the images and obtained good agreement between simulated and measured permeability. The distribution of local velocity showed that after precipitation the flow was confined to narrow channels in the pore space. This method can be applied to any type of porous system with precipitation.
doi_str_mv 10.1016/j.fuel.2020.118871
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000584919700087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120318676</els_id><sourcerecordid>2469842064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-c94e6a15da2691155b76c787a68c68d3a27715e41ce20a029b97b561b9dbedf3</originalsourceid><addsrcrecordid>eNqNkMtOxCAUQInRxHH0B1w1cWk6Am2BJm5M42MSE13MnlB6O1IrVGg1_r2Mnbg0riDkHLgchM4JXhFM2FW3aifoVxTTeECE4OQALYjgWcpJkR2iBY5USjNGjtFJCB3GmIsiX6D1s_OQBq16SMyb2hq7TVybqDC8qH4EC6mxzaShSYYIJrp32x_G2EQrXzurRki806_hFB21qg9wtl-XaHN3u6ke0sen-3V185jqjNMx1WUOTJGiUZSVhBRFzZnmgismNBNNpiiPI0NONFCsMC3rktcFI3XZ1NC02RJdzNcO3r1PEEbZucnb-KKkOStFTjHLI0VnSnsXgodWDj5-z39JguWumOzkrpjcFZNzsSiJWfqE2rVBG7AafsWYrBB5SUoed4JXZlSjcbZykx2jevl_NdLXMw2x04cBL_dGYzzoUTbO_DXnN5SNlJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469842064</pqid></control><display><type>article</type><title>Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lin, Qingyang ; Akai, Takashi ; Blunt, Martin J. ; Bijeljic, Branko ; Iwama, Hiroki ; Takabayashi, Katsumo ; Onaka, Yutaka ; Yonebayashi, Hideharu</creator><creatorcontrib>Lin, Qingyang ; Akai, Takashi ; Blunt, Martin J. ; Bijeljic, Branko ; Iwama, Hiroki ; Takabayashi, Katsumo ; Onaka, Yutaka ; Yonebayashi, Hideharu</creatorcontrib><description>We propose an experimental methodology to visualize asphaltene precipitation in the pore space of rocks and assess the reduction in permeability. We perform core flooding experiments integrated with X-ray microtomography (micro-CT). The simultaneous injection of pure heptane and crude oil containing asphaltene induces the precipitation of asphaltene in the pore space. The degree of precipitation is controlled by the measurement of differential pressure across the sample. After precipitation, doped heptane is injected to replace the fluid to enhance the contrast between precipitated asphaltene and doped heptane. The micro-CT images are segmented into three phases: void, precipitated asphaltene, and rock. In the experiment, we observed that the precipitated asphaltene which occupied 39.1% of the pore volume caused a 29-fold reduction in permeability. Furthermore, we analyze the spatial distribution of precipitated asphaltene which showed that the asphaltene tended to clog the larger pores. We also computed the flow field numerically on the images and obtained good agreement between simulated and measured permeability. The distribution of local velocity showed that after precipitation the flow was confined to narrow channels in the pore space. This method can be applied to any type of porous system with precipitation.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.118871</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Asphaltene ; Asphaltenes ; Carbonate rocks ; Channel pores ; Chemical precipitation ; Computed tomography ; Crude oil ; Differential pressure ; Differential thermal analysis ; Energy &amp; Fuels ; Engineering ; Engineering, Chemical ; Flooding ; Formation damage ; Heptanes ; Image contrast ; Image enhancement ; Membrane permeability ; Permeability ; Pore-scale imaging ; Reduction ; Science &amp; Technology ; Spatial distribution ; Technology ; X ray microtomography</subject><ispartof>Fuel (Guildford), 2021-01, Vol.283, p.118871, Article 118871</ispartof><rights>2020 The Authors</rights><rights>Copyright Elsevier BV Jan 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000584919700087</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c372t-c94e6a15da2691155b76c787a68c68d3a27715e41ce20a029b97b561b9dbedf3</citedby><cites>FETCH-LOGICAL-c372t-c94e6a15da2691155b76c787a68c68d3a27715e41ce20a029b97b561b9dbedf3</cites><orcidid>0000-0003-2800-9034 ; 0000-0001-5691-9532 ; 0000-0002-8725-0250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2020.118871$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,39262,45999</link.rule.ids></links><search><creatorcontrib>Lin, Qingyang</creatorcontrib><creatorcontrib>Akai, Takashi</creatorcontrib><creatorcontrib>Blunt, Martin J.</creatorcontrib><creatorcontrib>Bijeljic, Branko</creatorcontrib><creatorcontrib>Iwama, Hiroki</creatorcontrib><creatorcontrib>Takabayashi, Katsumo</creatorcontrib><creatorcontrib>Onaka, Yutaka</creatorcontrib><creatorcontrib>Yonebayashi, Hideharu</creatorcontrib><title>Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks</title><title>Fuel (Guildford)</title><addtitle>FUEL</addtitle><description>We propose an experimental methodology to visualize asphaltene precipitation in the pore space of rocks and assess the reduction in permeability. We perform core flooding experiments integrated with X-ray microtomography (micro-CT). The simultaneous injection of pure heptane and crude oil containing asphaltene induces the precipitation of asphaltene in the pore space. The degree of precipitation is controlled by the measurement of differential pressure across the sample. After precipitation, doped heptane is injected to replace the fluid to enhance the contrast between precipitated asphaltene and doped heptane. The micro-CT images are segmented into three phases: void, precipitated asphaltene, and rock. In the experiment, we observed that the precipitated asphaltene which occupied 39.1% of the pore volume caused a 29-fold reduction in permeability. Furthermore, we analyze the spatial distribution of precipitated asphaltene which showed that the asphaltene tended to clog the larger pores. We also computed the flow field numerically on the images and obtained good agreement between simulated and measured permeability. The distribution of local velocity showed that after precipitation the flow was confined to narrow channels in the pore space. This method can be applied to any type of porous system with precipitation.</description><subject>Asphaltene</subject><subject>Asphaltenes</subject><subject>Carbonate rocks</subject><subject>Channel pores</subject><subject>Chemical precipitation</subject><subject>Computed tomography</subject><subject>Crude oil</subject><subject>Differential pressure</subject><subject>Differential thermal analysis</subject><subject>Energy &amp; Fuels</subject><subject>Engineering</subject><subject>Engineering, Chemical</subject><subject>Flooding</subject><subject>Formation damage</subject><subject>Heptanes</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Membrane permeability</subject><subject>Permeability</subject><subject>Pore-scale imaging</subject><subject>Reduction</subject><subject>Science &amp; Technology</subject><subject>Spatial distribution</subject><subject>Technology</subject><subject>X ray microtomography</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMtOxCAUQInRxHH0B1w1cWk6Am2BJm5M42MSE13MnlB6O1IrVGg1_r2Mnbg0riDkHLgchM4JXhFM2FW3aifoVxTTeECE4OQALYjgWcpJkR2iBY5USjNGjtFJCB3GmIsiX6D1s_OQBq16SMyb2hq7TVybqDC8qH4EC6mxzaShSYYIJrp32x_G2EQrXzurRki806_hFB21qg9wtl-XaHN3u6ke0sen-3V185jqjNMx1WUOTJGiUZSVhBRFzZnmgismNBNNpiiPI0NONFCsMC3rktcFI3XZ1NC02RJdzNcO3r1PEEbZucnb-KKkOStFTjHLI0VnSnsXgodWDj5-z39JguWumOzkrpjcFZNzsSiJWfqE2rVBG7AafsWYrBB5SUoed4JXZlSjcbZykx2jevl_NdLXMw2x04cBL_dGYzzoUTbO_DXnN5SNlJ4</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Lin, Qingyang</creator><creator>Akai, Takashi</creator><creator>Blunt, Martin J.</creator><creator>Bijeljic, Branko</creator><creator>Iwama, Hiroki</creator><creator>Takabayashi, Katsumo</creator><creator>Onaka, Yutaka</creator><creator>Yonebayashi, Hideharu</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-2800-9034</orcidid><orcidid>https://orcid.org/0000-0001-5691-9532</orcidid><orcidid>https://orcid.org/0000-0002-8725-0250</orcidid></search><sort><creationdate>20210101</creationdate><title>Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks</title><author>Lin, Qingyang ; Akai, Takashi ; Blunt, Martin J. ; Bijeljic, Branko ; Iwama, Hiroki ; Takabayashi, Katsumo ; Onaka, Yutaka ; Yonebayashi, Hideharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-c94e6a15da2691155b76c787a68c68d3a27715e41ce20a029b97b561b9dbedf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asphaltene</topic><topic>Asphaltenes</topic><topic>Carbonate rocks</topic><topic>Channel pores</topic><topic>Chemical precipitation</topic><topic>Computed tomography</topic><topic>Crude oil</topic><topic>Differential pressure</topic><topic>Differential thermal analysis</topic><topic>Energy &amp; Fuels</topic><topic>Engineering</topic><topic>Engineering, Chemical</topic><topic>Flooding</topic><topic>Formation damage</topic><topic>Heptanes</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Membrane permeability</topic><topic>Permeability</topic><topic>Pore-scale imaging</topic><topic>Reduction</topic><topic>Science &amp; Technology</topic><topic>Spatial distribution</topic><topic>Technology</topic><topic>X ray microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qingyang</creatorcontrib><creatorcontrib>Akai, Takashi</creatorcontrib><creatorcontrib>Blunt, Martin J.</creatorcontrib><creatorcontrib>Bijeljic, Branko</creatorcontrib><creatorcontrib>Iwama, Hiroki</creatorcontrib><creatorcontrib>Takabayashi, Katsumo</creatorcontrib><creatorcontrib>Onaka, Yutaka</creatorcontrib><creatorcontrib>Yonebayashi, Hideharu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Qingyang</au><au>Akai, Takashi</au><au>Blunt, Martin J.</au><au>Bijeljic, Branko</au><au>Iwama, Hiroki</au><au>Takabayashi, Katsumo</au><au>Onaka, Yutaka</au><au>Yonebayashi, Hideharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks</atitle><jtitle>Fuel (Guildford)</jtitle><stitle>FUEL</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>283</volume><spage>118871</spage><pages>118871-</pages><artnum>118871</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>We propose an experimental methodology to visualize asphaltene precipitation in the pore space of rocks and assess the reduction in permeability. We perform core flooding experiments integrated with X-ray microtomography (micro-CT). The simultaneous injection of pure heptane and crude oil containing asphaltene induces the precipitation of asphaltene in the pore space. The degree of precipitation is controlled by the measurement of differential pressure across the sample. After precipitation, doped heptane is injected to replace the fluid to enhance the contrast between precipitated asphaltene and doped heptane. The micro-CT images are segmented into three phases: void, precipitated asphaltene, and rock. In the experiment, we observed that the precipitated asphaltene which occupied 39.1% of the pore volume caused a 29-fold reduction in permeability. Furthermore, we analyze the spatial distribution of precipitated asphaltene which showed that the asphaltene tended to clog the larger pores. We also computed the flow field numerically on the images and obtained good agreement between simulated and measured permeability. The distribution of local velocity showed that after precipitation the flow was confined to narrow channels in the pore space. This method can be applied to any type of porous system with precipitation.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.118871</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2800-9034</orcidid><orcidid>https://orcid.org/0000-0001-5691-9532</orcidid><orcidid>https://orcid.org/0000-0002-8725-0250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2021-01, Vol.283, p.118871, Article 118871
issn 0016-2361
1873-7153
language eng
recordid cdi_webofscience_primary_000584919700087
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Asphaltene
Asphaltenes
Carbonate rocks
Channel pores
Chemical precipitation
Computed tomography
Crude oil
Differential pressure
Differential thermal analysis
Energy & Fuels
Engineering
Engineering, Chemical
Flooding
Formation damage
Heptanes
Image contrast
Image enhancement
Membrane permeability
Permeability
Pore-scale imaging
Reduction
Science & Technology
Spatial distribution
Technology
X ray microtomography
title Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore-scale%20imaging%20of%20asphaltene-induced%20pore%20clogging%20in%20carbonate%20rocks&rft.jtitle=Fuel%20(Guildford)&rft.au=Lin,%20Qingyang&rft.date=2021-01-01&rft.volume=283&rft.spage=118871&rft.pages=118871-&rft.artnum=118871&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.118871&rft_dat=%3Cproquest_webof%3E2469842064%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469842064&rft_id=info:pmid/&rft_els_id=S0016236120318676&rfr_iscdi=true