Analytical Modeling of Short-Channel Effects in MFIS Negative-Capacitance FET Including Quantum Confinement Effects

An analytical 2-D model of double-gate metal-ferroelectric-insulator-semiconductor-negative-capacitance FET (MFIS-NCFET), using Green's function approach, in the subthreshold region, is presented in this article. The explicit solution of coupled 2-D Landau-Devonshire and Poisson equations is an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2020-11, Vol.67 (11), p.4757-4764
Hauptverfasser: Pandey, Nilesh, Chauhan, Yogesh Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analytical 2-D model of double-gate metal-ferroelectric-insulator-semiconductor-negative-capacitance FET (MFIS-NCFET), using Green's function approach, in the subthreshold region, is presented in this article. The explicit solution of coupled 2-D Landau-Devonshire and Poisson equations is analytically derived. Subsequently, an analytical and explicit model of subthreshold slope is developed from potential functions. The developed model includes quantum-mechanical effects, which considers not only geometrical confinements but also electrical confinements. The analytical solution of a 2-D nonhomogeneous Poisson equation coupled with the 1-D Schrödinger equation is used to obtain the potential function in the channel. The impact of the ferroelectric thickness ( {t}_{\text {fe}} ) on quantum confinement is also studied. We find that larger {t}_{\text {fe}} reduces the quantum confinement effect. Therefore, as {t}_{\text {fe}} increases, threshold voltage roll-off with the variation in Si-body thickness decreases.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2020.3022002