VTR 8: High-performance CAD and Customizable FPGA Architecture Modelling
Developing Field-programmable Gate Array (FPGA) architectures is challenging due to the competing requirements of various application domains and changing manufacturing process technology. This is compounded by the difficulty of fairly evaluating FPGA architectural choices, which requires sophistica...
Gespeichert in:
Veröffentlicht in: | ACM transactions on reconfigurable technology and systems 2020-06, Vol.13 (2), p.1-55, Article 9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | ACM transactions on reconfigurable technology and systems |
container_volume | 13 |
creator | Murray, Kevin E. Petelin, Oleg Zhong, Sheng Wang, Jia Min Eldafrawy, Mohamed Legault, Jean-Philippe Sha, Eugene Graham, Aaron G. Wu, Jean Walker, Matthew J. P. Zeng, Hanqing Patros, Panagiotis Luu, Jason Kent, Kenneth B. Betz, Vaughn |
description | Developing Field-programmable Gate Array (FPGA) architectures is challenging due to the competing requirements of various application domains and changing manufacturing process technology. This is compounded by the difficulty of fairly evaluating FPGA architectural choices, which requires sophisticated highquality Computer Aided Design (CAD) tools to target each potential architecture. This article describes version 8.0 of the open source Verilog to Routing (VTR) project, which provides such a design flow. VTR 8 expands the scope of FPGA architectures that can be modelled, allowing VTR to target and model many details of both commercial and proposed FPGA architectures. The VTR design flow also serves as a baseline for evaluating new CAD algorithms. It is therefore important, for both CAD algorithm comparisons and the validity of architectural conclusions, that VTR produce high-quality circuit implementations. VTR 8 significantly improves optimization quality (reductions of 15% minimum routable channel width, 41% wirelength, and 12% critical path delay), run-time (5.3x faster) and memory footprint (3.3x lower). Finally, we demonstrate VTR is run-time and memory footprint efficient, while producing circuit implementations of reasonable quality compared to highly-tuned architecture-specific industrial tools-showing that architecture generality, good implementation quality, and run-time efficiency are not mutually exclusive goals. |
doi_str_mv | 10.1145/3388617 |
format | Article |
fullrecord | <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_webofscience_primary_000583746000004CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000583746000004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-94812f80a506d5b795b7a2000bbdae7d139e8438e74962f4e39b36fd46bf35833</originalsourceid><addsrcrecordid>eNqNkNFLwzAQxoMoOKf4L-TNB6kmS5qkvpXqNmGiyPS1pO1li3TNSFJE_3o7NvbswXH38Pu-4z6Erim5o5Sn94wpJag8QSOaMZFITvnpcSfiHF2E8EWIYELxEZp_Lt-xesBzu1onW_DG-Y3uasBF_oh11-CiD9Ft7K-uWsDTt1mOc1-vbYQ69h7wi2ugbW23ukRnRrcBrg5zjD6mT8tinixeZ89FvkhqqmRMMq7oxCiiUyKatJLZ0HpCCKmqRoNsKMtAcaZA8kxMDAeWVUyYhovKsFQxNkY3e9_auxA8mHLr7Ub7n5KSchdAeQhgINWe_IbKmVBbGP460sPJwU5yQXbFCxt1tK4rXN_FQXr7fyn7A_CBa2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>VTR 8: High-performance CAD and Customizable FPGA Architecture Modelling</title><source>Access via ACM Digital Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Murray, Kevin E. ; Petelin, Oleg ; Zhong, Sheng ; Wang, Jia Min ; Eldafrawy, Mohamed ; Legault, Jean-Philippe ; Sha, Eugene ; Graham, Aaron G. ; Wu, Jean ; Walker, Matthew J. P. ; Zeng, Hanqing ; Patros, Panagiotis ; Luu, Jason ; Kent, Kenneth B. ; Betz, Vaughn</creator><creatorcontrib>Murray, Kevin E. ; Petelin, Oleg ; Zhong, Sheng ; Wang, Jia Min ; Eldafrawy, Mohamed ; Legault, Jean-Philippe ; Sha, Eugene ; Graham, Aaron G. ; Wu, Jean ; Walker, Matthew J. P. ; Zeng, Hanqing ; Patros, Panagiotis ; Luu, Jason ; Kent, Kenneth B. ; Betz, Vaughn</creatorcontrib><description>Developing Field-programmable Gate Array (FPGA) architectures is challenging due to the competing requirements of various application domains and changing manufacturing process technology. This is compounded by the difficulty of fairly evaluating FPGA architectural choices, which requires sophisticated highquality Computer Aided Design (CAD) tools to target each potential architecture. This article describes version 8.0 of the open source Verilog to Routing (VTR) project, which provides such a design flow. VTR 8 expands the scope of FPGA architectures that can be modelled, allowing VTR to target and model many details of both commercial and proposed FPGA architectures. The VTR design flow also serves as a baseline for evaluating new CAD algorithms. It is therefore important, for both CAD algorithm comparisons and the validity of architectural conclusions, that VTR produce high-quality circuit implementations. VTR 8 significantly improves optimization quality (reductions of 15% minimum routable channel width, 41% wirelength, and 12% critical path delay), run-time (5.3x faster) and memory footprint (3.3x lower). Finally, we demonstrate VTR is run-time and memory footprint efficient, while producing circuit implementations of reasonable quality compared to highly-tuned architecture-specific industrial tools-showing that architecture generality, good implementation quality, and run-time efficiency are not mutually exclusive goals.</description><identifier>ISSN: 1936-7406</identifier><identifier>EISSN: 1936-7414</identifier><identifier>DOI: 10.1145/3388617</identifier><language>eng</language><publisher>NEW YORK: Assoc Computing Machinery</publisher><subject>Computer Science ; Computer Science, Hardware & Architecture ; Science & Technology ; Technology</subject><ispartof>ACM transactions on reconfigurable technology and systems, 2020-06, Vol.13 (2), p.1-55, Article 9</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>136</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000583746000004</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c187t-94812f80a506d5b795b7a2000bbdae7d139e8438e74962f4e39b36fd46bf35833</cites><orcidid>0000-0002-2578-2147 ; 0000-0002-4157-8584 ; 0000-0003-2764-823X ; 0000-0002-8535-3432 ; 0000-0002-8151-8359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,28255</link.rule.ids></links><search><creatorcontrib>Murray, Kevin E.</creatorcontrib><creatorcontrib>Petelin, Oleg</creatorcontrib><creatorcontrib>Zhong, Sheng</creatorcontrib><creatorcontrib>Wang, Jia Min</creatorcontrib><creatorcontrib>Eldafrawy, Mohamed</creatorcontrib><creatorcontrib>Legault, Jean-Philippe</creatorcontrib><creatorcontrib>Sha, Eugene</creatorcontrib><creatorcontrib>Graham, Aaron G.</creatorcontrib><creatorcontrib>Wu, Jean</creatorcontrib><creatorcontrib>Walker, Matthew J. P.</creatorcontrib><creatorcontrib>Zeng, Hanqing</creatorcontrib><creatorcontrib>Patros, Panagiotis</creatorcontrib><creatorcontrib>Luu, Jason</creatorcontrib><creatorcontrib>Kent, Kenneth B.</creatorcontrib><creatorcontrib>Betz, Vaughn</creatorcontrib><title>VTR 8: High-performance CAD and Customizable FPGA Architecture Modelling</title><title>ACM transactions on reconfigurable technology and systems</title><addtitle>ACM T RECONFIG TECHN</addtitle><description>Developing Field-programmable Gate Array (FPGA) architectures is challenging due to the competing requirements of various application domains and changing manufacturing process technology. This is compounded by the difficulty of fairly evaluating FPGA architectural choices, which requires sophisticated highquality Computer Aided Design (CAD) tools to target each potential architecture. This article describes version 8.0 of the open source Verilog to Routing (VTR) project, which provides such a design flow. VTR 8 expands the scope of FPGA architectures that can be modelled, allowing VTR to target and model many details of both commercial and proposed FPGA architectures. The VTR design flow also serves as a baseline for evaluating new CAD algorithms. It is therefore important, for both CAD algorithm comparisons and the validity of architectural conclusions, that VTR produce high-quality circuit implementations. VTR 8 significantly improves optimization quality (reductions of 15% minimum routable channel width, 41% wirelength, and 12% critical path delay), run-time (5.3x faster) and memory footprint (3.3x lower). Finally, we demonstrate VTR is run-time and memory footprint efficient, while producing circuit implementations of reasonable quality compared to highly-tuned architecture-specific industrial tools-showing that architecture generality, good implementation quality, and run-time efficiency are not mutually exclusive goals.</description><subject>Computer Science</subject><subject>Computer Science, Hardware & Architecture</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>1936-7406</issn><issn>1936-7414</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkNFLwzAQxoMoOKf4L-TNB6kmS5qkvpXqNmGiyPS1pO1li3TNSFJE_3o7NvbswXH38Pu-4z6Erim5o5Sn94wpJag8QSOaMZFITvnpcSfiHF2E8EWIYELxEZp_Lt-xesBzu1onW_DG-Y3uasBF_oh11-CiD9Ft7K-uWsDTt1mOc1-vbYQ69h7wi2ugbW23ukRnRrcBrg5zjD6mT8tinixeZ89FvkhqqmRMMq7oxCiiUyKatJLZ0HpCCKmqRoNsKMtAcaZA8kxMDAeWVUyYhovKsFQxNkY3e9_auxA8mHLr7Ub7n5KSchdAeQhgINWe_IbKmVBbGP460sPJwU5yQXbFCxt1tK4rXN_FQXr7fyn7A_CBa2s</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Murray, Kevin E.</creator><creator>Petelin, Oleg</creator><creator>Zhong, Sheng</creator><creator>Wang, Jia Min</creator><creator>Eldafrawy, Mohamed</creator><creator>Legault, Jean-Philippe</creator><creator>Sha, Eugene</creator><creator>Graham, Aaron G.</creator><creator>Wu, Jean</creator><creator>Walker, Matthew J. P.</creator><creator>Zeng, Hanqing</creator><creator>Patros, Panagiotis</creator><creator>Luu, Jason</creator><creator>Kent, Kenneth B.</creator><creator>Betz, Vaughn</creator><general>Assoc Computing Machinery</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2578-2147</orcidid><orcidid>https://orcid.org/0000-0002-4157-8584</orcidid><orcidid>https://orcid.org/0000-0003-2764-823X</orcidid><orcidid>https://orcid.org/0000-0002-8535-3432</orcidid><orcidid>https://orcid.org/0000-0002-8151-8359</orcidid></search><sort><creationdate>20200630</creationdate><title>VTR 8: High-performance CAD and Customizable FPGA Architecture Modelling</title><author>Murray, Kevin E. ; Petelin, Oleg ; Zhong, Sheng ; Wang, Jia Min ; Eldafrawy, Mohamed ; Legault, Jean-Philippe ; Sha, Eugene ; Graham, Aaron G. ; Wu, Jean ; Walker, Matthew J. P. ; Zeng, Hanqing ; Patros, Panagiotis ; Luu, Jason ; Kent, Kenneth B. ; Betz, Vaughn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-94812f80a506d5b795b7a2000bbdae7d139e8438e74962f4e39b36fd46bf35833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Science</topic><topic>Computer Science, Hardware & Architecture</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murray, Kevin E.</creatorcontrib><creatorcontrib>Petelin, Oleg</creatorcontrib><creatorcontrib>Zhong, Sheng</creatorcontrib><creatorcontrib>Wang, Jia Min</creatorcontrib><creatorcontrib>Eldafrawy, Mohamed</creatorcontrib><creatorcontrib>Legault, Jean-Philippe</creatorcontrib><creatorcontrib>Sha, Eugene</creatorcontrib><creatorcontrib>Graham, Aaron G.</creatorcontrib><creatorcontrib>Wu, Jean</creatorcontrib><creatorcontrib>Walker, Matthew J. P.</creatorcontrib><creatorcontrib>Zeng, Hanqing</creatorcontrib><creatorcontrib>Patros, Panagiotis</creatorcontrib><creatorcontrib>Luu, Jason</creatorcontrib><creatorcontrib>Kent, Kenneth B.</creatorcontrib><creatorcontrib>Betz, Vaughn</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>ACM transactions on reconfigurable technology and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murray, Kevin E.</au><au>Petelin, Oleg</au><au>Zhong, Sheng</au><au>Wang, Jia Min</au><au>Eldafrawy, Mohamed</au><au>Legault, Jean-Philippe</au><au>Sha, Eugene</au><au>Graham, Aaron G.</au><au>Wu, Jean</au><au>Walker, Matthew J. P.</au><au>Zeng, Hanqing</au><au>Patros, Panagiotis</au><au>Luu, Jason</au><au>Kent, Kenneth B.</au><au>Betz, Vaughn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VTR 8: High-performance CAD and Customizable FPGA Architecture Modelling</atitle><jtitle>ACM transactions on reconfigurable technology and systems</jtitle><stitle>ACM T RECONFIG TECHN</stitle><date>2020-06-30</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>1</spage><epage>55</epage><pages>1-55</pages><artnum>9</artnum><issn>1936-7406</issn><eissn>1936-7414</eissn><abstract>Developing Field-programmable Gate Array (FPGA) architectures is challenging due to the competing requirements of various application domains and changing manufacturing process technology. This is compounded by the difficulty of fairly evaluating FPGA architectural choices, which requires sophisticated highquality Computer Aided Design (CAD) tools to target each potential architecture. This article describes version 8.0 of the open source Verilog to Routing (VTR) project, which provides such a design flow. VTR 8 expands the scope of FPGA architectures that can be modelled, allowing VTR to target and model many details of both commercial and proposed FPGA architectures. The VTR design flow also serves as a baseline for evaluating new CAD algorithms. It is therefore important, for both CAD algorithm comparisons and the validity of architectural conclusions, that VTR produce high-quality circuit implementations. VTR 8 significantly improves optimization quality (reductions of 15% minimum routable channel width, 41% wirelength, and 12% critical path delay), run-time (5.3x faster) and memory footprint (3.3x lower). Finally, we demonstrate VTR is run-time and memory footprint efficient, while producing circuit implementations of reasonable quality compared to highly-tuned architecture-specific industrial tools-showing that architecture generality, good implementation quality, and run-time efficiency are not mutually exclusive goals.</abstract><cop>NEW YORK</cop><pub>Assoc Computing Machinery</pub><doi>10.1145/3388617</doi><tpages>60</tpages><orcidid>https://orcid.org/0000-0002-2578-2147</orcidid><orcidid>https://orcid.org/0000-0002-4157-8584</orcidid><orcidid>https://orcid.org/0000-0003-2764-823X</orcidid><orcidid>https://orcid.org/0000-0002-8535-3432</orcidid><orcidid>https://orcid.org/0000-0002-8151-8359</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-7406 |
ispartof | ACM transactions on reconfigurable technology and systems, 2020-06, Vol.13 (2), p.1-55, Article 9 |
issn | 1936-7406 1936-7414 |
language | eng |
recordid | cdi_webofscience_primary_000583746000004CitationCount |
source | Access via ACM Digital Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Computer Science Computer Science, Hardware & Architecture Science & Technology Technology |
title | VTR 8: High-performance CAD and Customizable FPGA Architecture Modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-08T04%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VTR%208:%20High-performance%20CAD%20and%20Customizable%20FPGA%20Architecture%20Modelling&rft.jtitle=ACM%20transactions%20on%20reconfigurable%20technology%20and%20systems&rft.au=Murray,%20Kevin%20E.&rft.date=2020-06-30&rft.volume=13&rft.issue=2&rft.spage=1&rft.epage=55&rft.pages=1-55&rft.artnum=9&rft.issn=1936-7406&rft.eissn=1936-7414&rft_id=info:doi/10.1145/3388617&rft_dat=%3Cwebofscience_cross%3E000583746000004%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |