Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data

Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this arti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on knowledge discovery from data 2020-08, Vol.14 (5), p.1-26, Article 62
Hauptverfasser: Wang, Tingting, Duan, Lei, Dong, Guozhu, Bao, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 5
container_start_page 1
container_title ACM transactions on knowledge discovery from data
container_volume 14
creator Wang, Tingting
Duan, Lei
Dong, Guozhu
Bao, Zhifeng
description Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this article, we study the problem of mining outlying sequence patterns in sequence data addressing the question: given a query sequence s in a sequence dataset D, the objective is to discover sequence patterns that will indicate the most unusualness (i.e., outlierness) of s compared against other sequences. Technically, we use the rank defined by the average probabilistic strength (aps) of a sequence pattern in a sequence to measure the outlierness of the sequence. Then a minimal sequence pattern where the query sequence is ranked the highest is defined as an outlying sequence pattern. To address the above problem, we present OSPMiner, a heuristic method that computes aps by incorporating several pruning techniques. Our empirical study using both real and synthetic data demonstrates that OSPMiner is effective and efficient.
doi_str_mv 10.1145/3399671
format Article
fullrecord <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_webofscience_primary_000583628300013CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000583628300013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-990f068f7c51b4f73a97614f86a7f5c5f2040478f85eae362ccabae5815c264b3</originalsourceid><addsrcrecordid>eNqNkM1Lw0AQxRdRsFbxX8jNg0R3sp85llg_oFJBBT2FzbIjK3Wj2S0S_3oTWnv2NI-Z3zx4j5BToBcAXFwyVpZSwR6ZgBAy56p42f_TUsMhOYrxnVIhAIoJeZ0jeutdSNm9Dz68ZS1my3Va9aN-dF9rF6zLHkxKrgsxw7bLZsGs-p_xPoJ-2LsYx78dfmWSOSYHaFbRnWznlDxfz5-q23yxvLmrZovcFoqlvCwpUqlRWQENR8VMqSRw1NIoFFZgQTnlSqMWzjgmC2tNY5zQIGwhecOm5Gzja7s2xs5h_dn5D9P1NdB6bKTeNjKQ5xvy2zUtxjG1dTuaDp3owV-zQQEbaP1_uvLJJN-Gql2HxH4B8Ztz5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data</title><source>Access via ACM Digital Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Wang, Tingting ; Duan, Lei ; Dong, Guozhu ; Bao, Zhifeng</creator><creatorcontrib>Wang, Tingting ; Duan, Lei ; Dong, Guozhu ; Bao, Zhifeng</creatorcontrib><description>Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this article, we study the problem of mining outlying sequence patterns in sequence data addressing the question: given a query sequence s in a sequence dataset D, the objective is to discover sequence patterns that will indicate the most unusualness (i.e., outlierness) of s compared against other sequences. Technically, we use the rank defined by the average probabilistic strength (aps) of a sequence pattern in a sequence to measure the outlierness of the sequence. Then a minimal sequence pattern where the query sequence is ranked the highest is defined as an outlying sequence pattern. To address the above problem, we present OSPMiner, a heuristic method that computes aps by incorporating several pruning techniques. Our empirical study using both real and synthetic data demonstrates that OSPMiner is effective and efficient.</description><identifier>ISSN: 1556-4681</identifier><identifier>EISSN: 1556-472X</identifier><identifier>DOI: 10.1145/3399671</identifier><language>eng</language><publisher>NEW YORK: Assoc Computing Machinery</publisher><subject>Computer Science ; Computer Science, Information Systems ; Computer Science, Software Engineering ; Science &amp; Technology ; Technology</subject><ispartof>ACM transactions on knowledge discovery from data, 2020-08, Vol.14 (5), p.1-26, Article 62</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000583628300013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c273t-990f068f7c51b4f73a97614f86a7f5c5f2040478f85eae362ccabae5815c264b3</citedby><cites>FETCH-LOGICAL-c273t-990f068f7c51b4f73a97614f86a7f5c5f2040478f85eae362ccabae5815c264b3</cites><orcidid>0000-0003-2477-381X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Duan, Lei</creatorcontrib><creatorcontrib>Dong, Guozhu</creatorcontrib><creatorcontrib>Bao, Zhifeng</creatorcontrib><title>Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data</title><title>ACM transactions on knowledge discovery from data</title><addtitle>ACM T KNOWL DISCOV D</addtitle><description>Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this article, we study the problem of mining outlying sequence patterns in sequence data addressing the question: given a query sequence s in a sequence dataset D, the objective is to discover sequence patterns that will indicate the most unusualness (i.e., outlierness) of s compared against other sequences. Technically, we use the rank defined by the average probabilistic strength (aps) of a sequence pattern in a sequence to measure the outlierness of the sequence. Then a minimal sequence pattern where the query sequence is ranked the highest is defined as an outlying sequence pattern. To address the above problem, we present OSPMiner, a heuristic method that computes aps by incorporating several pruning techniques. Our empirical study using both real and synthetic data demonstrates that OSPMiner is effective and efficient.</description><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computer Science, Software Engineering</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>1556-4681</issn><issn>1556-472X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM1Lw0AQxRdRsFbxX8jNg0R3sp85llg_oFJBBT2FzbIjK3Wj2S0S_3oTWnv2NI-Z3zx4j5BToBcAXFwyVpZSwR6ZgBAy56p42f_TUsMhOYrxnVIhAIoJeZ0jeutdSNm9Dz68ZS1my3Va9aN-dF9rF6zLHkxKrgsxw7bLZsGs-p_xPoJ-2LsYx78dfmWSOSYHaFbRnWznlDxfz5-q23yxvLmrZovcFoqlvCwpUqlRWQENR8VMqSRw1NIoFFZgQTnlSqMWzjgmC2tNY5zQIGwhecOm5Gzja7s2xs5h_dn5D9P1NdB6bKTeNjKQ5xvy2zUtxjG1dTuaDp3owV-zQQEbaP1_uvLJJN-Gql2HxH4B8Ztz5A</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wang, Tingting</creator><creator>Duan, Lei</creator><creator>Dong, Guozhu</creator><creator>Bao, Zhifeng</creator><general>Assoc Computing Machinery</general><scope>95M</scope><scope>ABMOY</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2477-381X</orcidid></search><sort><creationdate>20200801</creationdate><title>Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data</title><author>Wang, Tingting ; Duan, Lei ; Dong, Guozhu ; Bao, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-990f068f7c51b4f73a97614f86a7f5c5f2040478f85eae362ccabae5815c264b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computer Science, Software Engineering</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Duan, Lei</creatorcontrib><creatorcontrib>Dong, Guozhu</creatorcontrib><creatorcontrib>Bao, Zhifeng</creatorcontrib><collection>Conference Proceedings Citation Index - Science (CPCI-S)</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S) 2020</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>ACM transactions on knowledge discovery from data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tingting</au><au>Duan, Lei</au><au>Dong, Guozhu</au><au>Bao, Zhifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data</atitle><jtitle>ACM transactions on knowledge discovery from data</jtitle><stitle>ACM T KNOWL DISCOV D</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>62</artnum><issn>1556-4681</issn><eissn>1556-472X</eissn><abstract>Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this article, we study the problem of mining outlying sequence patterns in sequence data addressing the question: given a query sequence s in a sequence dataset D, the objective is to discover sequence patterns that will indicate the most unusualness (i.e., outlierness) of s compared against other sequences. Technically, we use the rank defined by the average probabilistic strength (aps) of a sequence pattern in a sequence to measure the outlierness of the sequence. Then a minimal sequence pattern where the query sequence is ranked the highest is defined as an outlying sequence pattern. To address the above problem, we present OSPMiner, a heuristic method that computes aps by incorporating several pruning techniques. Our empirical study using both real and synthetic data demonstrates that OSPMiner is effective and efficient.</abstract><cop>NEW YORK</cop><pub>Assoc Computing Machinery</pub><doi>10.1145/3399671</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2477-381X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1556-4681
ispartof ACM transactions on knowledge discovery from data, 2020-08, Vol.14 (5), p.1-26, Article 62
issn 1556-4681
1556-472X
language eng
recordid cdi_webofscience_primary_000583628300013CitationCount
source Access via ACM Digital Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Computer Science
Computer Science, Information Systems
Computer Science, Software Engineering
Science & Technology
Technology
title Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Mining%20of%20Outlying%20Sequence%20Patterns%20for%20Analyzing%20Outlierness%20of%20Sequence%20Data&rft.jtitle=ACM%20transactions%20on%20knowledge%20discovery%20from%20data&rft.au=Wang,%20Tingting&rft.date=2020-08-01&rft.volume=14&rft.issue=5&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=62&rft.issn=1556-4681&rft.eissn=1556-472X&rft_id=info:doi/10.1145/3399671&rft_dat=%3Cwebofscience_cross%3E000583628300013%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true