Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data
Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this arti...
Gespeichert in:
Veröffentlicht in: | ACM transactions on knowledge discovery from data 2020-08, Vol.14 (5), p.1-26, Article 62 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | ACM transactions on knowledge discovery from data |
container_volume | 14 |
creator | Wang, Tingting Duan, Lei Dong, Guozhu Bao, Zhifeng |
description | Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this article, we study the problem of mining outlying sequence patterns in sequence data addressing the question: given a query sequence s in a sequence dataset D, the objective is to discover sequence patterns that will indicate the most unusualness (i.e., outlierness) of s compared against other sequences. Technically, we use the rank defined by the average probabilistic strength (aps) of a sequence pattern in a sequence to measure the outlierness of the sequence. Then a minimal sequence pattern where the query sequence is ranked the highest is defined as an outlying sequence pattern. To address the above problem, we present OSPMiner, a heuristic method that computes aps by incorporating several pruning techniques. Our empirical study using both real and synthetic data demonstrates that OSPMiner is effective and efficient. |
doi_str_mv | 10.1145/3399671 |
format | Article |
fullrecord | <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_webofscience_primary_000583628300013CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>000583628300013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-990f068f7c51b4f73a97614f86a7f5c5f2040478f85eae362ccabae5815c264b3</originalsourceid><addsrcrecordid>eNqNkM1Lw0AQxRdRsFbxX8jNg0R3sp85llg_oFJBBT2FzbIjK3Wj2S0S_3oTWnv2NI-Z3zx4j5BToBcAXFwyVpZSwR6ZgBAy56p42f_TUsMhOYrxnVIhAIoJeZ0jeutdSNm9Dz68ZS1my3Va9aN-dF9rF6zLHkxKrgsxw7bLZsGs-p_xPoJ-2LsYx78dfmWSOSYHaFbRnWznlDxfz5-q23yxvLmrZovcFoqlvCwpUqlRWQENR8VMqSRw1NIoFFZgQTnlSqMWzjgmC2tNY5zQIGwhecOm5Gzja7s2xs5h_dn5D9P1NdB6bKTeNjKQ5xvy2zUtxjG1dTuaDp3owV-zQQEbaP1_uvLJJN-Gql2HxH4B8Ztz5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data</title><source>Access via ACM Digital Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Wang, Tingting ; Duan, Lei ; Dong, Guozhu ; Bao, Zhifeng</creator><creatorcontrib>Wang, Tingting ; Duan, Lei ; Dong, Guozhu ; Bao, Zhifeng</creatorcontrib><description>Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this article, we study the problem of mining outlying sequence patterns in sequence data addressing the question: given a query sequence s in a sequence dataset D, the objective is to discover sequence patterns that will indicate the most unusualness (i.e., outlierness) of s compared against other sequences. Technically, we use the rank defined by the average probabilistic strength (aps) of a sequence pattern in a sequence to measure the outlierness of the sequence. Then a minimal sequence pattern where the query sequence is ranked the highest is defined as an outlying sequence pattern. To address the above problem, we present OSPMiner, a heuristic method that computes aps by incorporating several pruning techniques. Our empirical study using both real and synthetic data demonstrates that OSPMiner is effective and efficient.</description><identifier>ISSN: 1556-4681</identifier><identifier>EISSN: 1556-472X</identifier><identifier>DOI: 10.1145/3399671</identifier><language>eng</language><publisher>NEW YORK: Assoc Computing Machinery</publisher><subject>Computer Science ; Computer Science, Information Systems ; Computer Science, Software Engineering ; Science & Technology ; Technology</subject><ispartof>ACM transactions on knowledge discovery from data, 2020-08, Vol.14 (5), p.1-26, Article 62</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000583628300013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c273t-990f068f7c51b4f73a97614f86a7f5c5f2040478f85eae362ccabae5815c264b3</citedby><cites>FETCH-LOGICAL-c273t-990f068f7c51b4f73a97614f86a7f5c5f2040478f85eae362ccabae5815c264b3</cites><orcidid>0000-0003-2477-381X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,28253</link.rule.ids></links><search><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Duan, Lei</creatorcontrib><creatorcontrib>Dong, Guozhu</creatorcontrib><creatorcontrib>Bao, Zhifeng</creatorcontrib><title>Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data</title><title>ACM transactions on knowledge discovery from data</title><addtitle>ACM T KNOWL DISCOV D</addtitle><description>Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this article, we study the problem of mining outlying sequence patterns in sequence data addressing the question: given a query sequence s in a sequence dataset D, the objective is to discover sequence patterns that will indicate the most unusualness (i.e., outlierness) of s compared against other sequences. Technically, we use the rank defined by the average probabilistic strength (aps) of a sequence pattern in a sequence to measure the outlierness of the sequence. Then a minimal sequence pattern where the query sequence is ranked the highest is defined as an outlying sequence pattern. To address the above problem, we present OSPMiner, a heuristic method that computes aps by incorporating several pruning techniques. Our empirical study using both real and synthetic data demonstrates that OSPMiner is effective and efficient.</description><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computer Science, Software Engineering</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>1556-4681</issn><issn>1556-472X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM1Lw0AQxRdRsFbxX8jNg0R3sp85llg_oFJBBT2FzbIjK3Wj2S0S_3oTWnv2NI-Z3zx4j5BToBcAXFwyVpZSwR6ZgBAy56p42f_TUsMhOYrxnVIhAIoJeZ0jeutdSNm9Dz68ZS1my3Va9aN-dF9rF6zLHkxKrgsxw7bLZsGs-p_xPoJ-2LsYx78dfmWSOSYHaFbRnWznlDxfz5-q23yxvLmrZovcFoqlvCwpUqlRWQENR8VMqSRw1NIoFFZgQTnlSqMWzjgmC2tNY5zQIGwhecOm5Gzja7s2xs5h_dn5D9P1NdB6bKTeNjKQ5xvy2zUtxjG1dTuaDp3owV-zQQEbaP1_uvLJJN-Gql2HxH4B8Ztz5A</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Wang, Tingting</creator><creator>Duan, Lei</creator><creator>Dong, Guozhu</creator><creator>Bao, Zhifeng</creator><general>Assoc Computing Machinery</general><scope>95M</scope><scope>ABMOY</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2477-381X</orcidid></search><sort><creationdate>20200801</creationdate><title>Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data</title><author>Wang, Tingting ; Duan, Lei ; Dong, Guozhu ; Bao, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-990f068f7c51b4f73a97614f86a7f5c5f2040478f85eae362ccabae5815c264b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computer Science, Software Engineering</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Duan, Lei</creatorcontrib><creatorcontrib>Dong, Guozhu</creatorcontrib><creatorcontrib>Bao, Zhifeng</creatorcontrib><collection>Conference Proceedings Citation Index - Science (CPCI-S)</collection><collection>Conference Proceedings Citation Index - Science (CPCI-S) 2020</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>ACM transactions on knowledge discovery from data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tingting</au><au>Duan, Lei</au><au>Dong, Guozhu</au><au>Bao, Zhifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data</atitle><jtitle>ACM transactions on knowledge discovery from data</jtitle><stitle>ACM T KNOWL DISCOV D</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>14</volume><issue>5</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>62</artnum><issn>1556-4681</issn><eissn>1556-472X</eissn><abstract>Recently, a lot of research work has been proposed in different domains to detect outliers and analyze the outlierness of outliers for relational data. However, while sequence data is ubiquitous in real life, analyzing the outlierness for sequence data has not received enough attention. In this article, we study the problem of mining outlying sequence patterns in sequence data addressing the question: given a query sequence s in a sequence dataset D, the objective is to discover sequence patterns that will indicate the most unusualness (i.e., outlierness) of s compared against other sequences. Technically, we use the rank defined by the average probabilistic strength (aps) of a sequence pattern in a sequence to measure the outlierness of the sequence. Then a minimal sequence pattern where the query sequence is ranked the highest is defined as an outlying sequence pattern. To address the above problem, we present OSPMiner, a heuristic method that computes aps by incorporating several pruning techniques. Our empirical study using both real and synthetic data demonstrates that OSPMiner is effective and efficient.</abstract><cop>NEW YORK</cop><pub>Assoc Computing Machinery</pub><doi>10.1145/3399671</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2477-381X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-4681 |
ispartof | ACM transactions on knowledge discovery from data, 2020-08, Vol.14 (5), p.1-26, Article 62 |
issn | 1556-4681 1556-472X |
language | eng |
recordid | cdi_webofscience_primary_000583628300013CitationCount |
source | Access via ACM Digital Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Computer Science Computer Science, Information Systems Computer Science, Software Engineering Science & Technology Technology |
title | Efficient Mining of Outlying Sequence Patterns for Analyzing Outlierness of Sequence Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Mining%20of%20Outlying%20Sequence%20Patterns%20for%20Analyzing%20Outlierness%20of%20Sequence%20Data&rft.jtitle=ACM%20transactions%20on%20knowledge%20discovery%20from%20data&rft.au=Wang,%20Tingting&rft.date=2020-08-01&rft.volume=14&rft.issue=5&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=62&rft.issn=1556-4681&rft.eissn=1556-472X&rft_id=info:doi/10.1145/3399671&rft_dat=%3Cwebofscience_cross%3E000583628300013%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |