Degeneracy and Redundancy in Active Inference

Abstract The notions of degeneracy and redundancy are important constructs in many areas, ranging from genomics through to network science. Degeneracy finds a powerful role in neuroscience, explaining key aspects of distributed processing and structure–function relationships in the brain. For exampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2020-10, Vol.30 (11), p.5750-5766
Hauptverfasser: Sajid, Noor, Parr, Thomas, Hope, Thomas M, Price, Cathy J, Friston, Karl J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5766
container_issue 11
container_start_page 5750
container_title Cerebral cortex (New York, N.Y. 1991)
container_volume 30
creator Sajid, Noor
Parr, Thomas
Hope, Thomas M
Price, Cathy J
Friston, Karl J
description Abstract The notions of degeneracy and redundancy are important constructs in many areas, ranging from genomics through to network science. Degeneracy finds a powerful role in neuroscience, explaining key aspects of distributed processing and structure–function relationships in the brain. For example, degeneracy accounts for the superadditive effect of lesions on functional deficits in terms of a “many-to-one” structure–function mapping. In this paper, we offer a principled account of degeneracy and redundancy, when function is operationalized in terms of active inference, namely, a formulation of perception and action as belief updating under generative models of the world. In brief, “degeneracy” is quantified by the “entropy” of posterior beliefs about the causes of sensations, while “redundancy” is the “complexity” cost incurred by forming those beliefs. From this perspective, degeneracy and redundancy are complementary: Active inference tries to minimize redundancy while maintaining degeneracy. This formulation is substantiated using statistical and mathematical notions of degenerate mappings and statistical efficiency. We then illustrate changes in degeneracy and redundancy during the learning of a word repetition task. Finally, we characterize the effects of lesions—to intrinsic and extrinsic connections—using in silico disconnections. These numerical analyses highlight the fundamental difference between degeneracy and redundancy—and how they score distinct imperatives for perceptual inference and structure learning that are relevant to synthetic and biological intelligence.
doi_str_mv 10.1093/cercor/bhaa148
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7899066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhaa148</oup_id><sourcerecordid>2409195270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-ad7b26ce11eb63a8cbb80cb7026528757c23dab8d0c4c783bdd8e19f75e537ff3</originalsourceid><addsrcrecordid>eNqFkMtLw0AQhxdRbK1ePUqPeki7r2R3L0Kpr0JBED0v-5i0kXRTN0mh_72RVNGTp51lvvnN8CF0SfCEYMWmDqKr4tSujSFcHqEh4RlOKFHquKsxFwmjhAzQWV2_Y0wETekpGjDKpaScD1FyBysIEI3bj03w4xfwbfAmdN8ijGeuKXYwXoQcIgQH5-gkN2UNF4d3hN4e7l_nT8ny-XExny0TxylvEuOFpZkDQsBmzEhnrcTOCkyzlEqRCkeZN1Z67LgTklnvJRCVixRSJvKcjdBtn7tt7Qa8g9BEU-ptLDYm7nVlCv23E4q1XlU7LaRSOMu6gOtDQKw-WqgbvSlqB2VpAlRtrSnHiqiUCtyhkx51sarrCPnPGoL1l2PdO9YHx93A1e_jfvBvqR1w0wNVu_0v7BPeU4ji</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409195270</pqid></control><display><type>article</type><title>Degeneracy and Redundancy in Active Inference</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Sajid, Noor ; Parr, Thomas ; Hope, Thomas M ; Price, Cathy J ; Friston, Karl J</creator><creatorcontrib>Sajid, Noor ; Parr, Thomas ; Hope, Thomas M ; Price, Cathy J ; Friston, Karl J</creatorcontrib><description>Abstract The notions of degeneracy and redundancy are important constructs in many areas, ranging from genomics through to network science. Degeneracy finds a powerful role in neuroscience, explaining key aspects of distributed processing and structure–function relationships in the brain. For example, degeneracy accounts for the superadditive effect of lesions on functional deficits in terms of a “many-to-one” structure–function mapping. In this paper, we offer a principled account of degeneracy and redundancy, when function is operationalized in terms of active inference, namely, a formulation of perception and action as belief updating under generative models of the world. In brief, “degeneracy” is quantified by the “entropy” of posterior beliefs about the causes of sensations, while “redundancy” is the “complexity” cost incurred by forming those beliefs. From this perspective, degeneracy and redundancy are complementary: Active inference tries to minimize redundancy while maintaining degeneracy. This formulation is substantiated using statistical and mathematical notions of degenerate mappings and statistical efficiency. We then illustrate changes in degeneracy and redundancy during the learning of a word repetition task. Finally, we characterize the effects of lesions—to intrinsic and extrinsic connections—using in silico disconnections. These numerical analyses highlight the fundamental difference between degeneracy and redundancy—and how they score distinct imperatives for perceptual inference and structure learning that are relevant to synthetic and biological intelligence.</description><identifier>ISSN: 1047-3211</identifier><identifier>ISSN: 1460-2199</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhaa148</identifier><identifier>PMID: 32488244</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Bayes Theorem ; Brain - physiology ; Humans ; Models, Neurological ; Original</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2020-10, Vol.30 (11), p.5750-5766</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-ad7b26ce11eb63a8cbb80cb7026528757c23dab8d0c4c783bdd8e19f75e537ff3</citedby><cites>FETCH-LOGICAL-c424t-ad7b26ce11eb63a8cbb80cb7026528757c23dab8d0c4c783bdd8e19f75e537ff3</cites><orcidid>0000-0001-5108-5743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32488244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sajid, Noor</creatorcontrib><creatorcontrib>Parr, Thomas</creatorcontrib><creatorcontrib>Hope, Thomas M</creatorcontrib><creatorcontrib>Price, Cathy J</creatorcontrib><creatorcontrib>Friston, Karl J</creatorcontrib><title>Degeneracy and Redundancy in Active Inference</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Abstract The notions of degeneracy and redundancy are important constructs in many areas, ranging from genomics through to network science. Degeneracy finds a powerful role in neuroscience, explaining key aspects of distributed processing and structure–function relationships in the brain. For example, degeneracy accounts for the superadditive effect of lesions on functional deficits in terms of a “many-to-one” structure–function mapping. In this paper, we offer a principled account of degeneracy and redundancy, when function is operationalized in terms of active inference, namely, a formulation of perception and action as belief updating under generative models of the world. In brief, “degeneracy” is quantified by the “entropy” of posterior beliefs about the causes of sensations, while “redundancy” is the “complexity” cost incurred by forming those beliefs. From this perspective, degeneracy and redundancy are complementary: Active inference tries to minimize redundancy while maintaining degeneracy. This formulation is substantiated using statistical and mathematical notions of degenerate mappings and statistical efficiency. We then illustrate changes in degeneracy and redundancy during the learning of a word repetition task. Finally, we characterize the effects of lesions—to intrinsic and extrinsic connections—using in silico disconnections. These numerical analyses highlight the fundamental difference between degeneracy and redundancy—and how they score distinct imperatives for perceptual inference and structure learning that are relevant to synthetic and biological intelligence.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Brain - physiology</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Original</subject><issn>1047-3211</issn><issn>1460-2199</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkMtLw0AQhxdRbK1ePUqPeki7r2R3L0Kpr0JBED0v-5i0kXRTN0mh_72RVNGTp51lvvnN8CF0SfCEYMWmDqKr4tSujSFcHqEh4RlOKFHquKsxFwmjhAzQWV2_Y0wETekpGjDKpaScD1FyBysIEI3bj03w4xfwbfAmdN8ijGeuKXYwXoQcIgQH5-gkN2UNF4d3hN4e7l_nT8ny-XExny0TxylvEuOFpZkDQsBmzEhnrcTOCkyzlEqRCkeZN1Z67LgTklnvJRCVixRSJvKcjdBtn7tt7Qa8g9BEU-ptLDYm7nVlCv23E4q1XlU7LaRSOMu6gOtDQKw-WqgbvSlqB2VpAlRtrSnHiqiUCtyhkx51sarrCPnPGoL1l2PdO9YHx93A1e_jfvBvqR1w0wNVu_0v7BPeU4ji</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Sajid, Noor</creator><creator>Parr, Thomas</creator><creator>Hope, Thomas M</creator><creator>Price, Cathy J</creator><creator>Friston, Karl J</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5108-5743</orcidid></search><sort><creationdate>20201001</creationdate><title>Degeneracy and Redundancy in Active Inference</title><author>Sajid, Noor ; Parr, Thomas ; Hope, Thomas M ; Price, Cathy J ; Friston, Karl J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-ad7b26ce11eb63a8cbb80cb7026528757c23dab8d0c4c783bdd8e19f75e537ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Brain - physiology</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sajid, Noor</creatorcontrib><creatorcontrib>Parr, Thomas</creatorcontrib><creatorcontrib>Hope, Thomas M</creatorcontrib><creatorcontrib>Price, Cathy J</creatorcontrib><creatorcontrib>Friston, Karl J</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sajid, Noor</au><au>Parr, Thomas</au><au>Hope, Thomas M</au><au>Price, Cathy J</au><au>Friston, Karl J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degeneracy and Redundancy in Active Inference</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>11</issue><spage>5750</spage><epage>5766</epage><pages>5750-5766</pages><issn>1047-3211</issn><issn>1460-2199</issn><eissn>1460-2199</eissn><abstract>Abstract The notions of degeneracy and redundancy are important constructs in many areas, ranging from genomics through to network science. Degeneracy finds a powerful role in neuroscience, explaining key aspects of distributed processing and structure–function relationships in the brain. For example, degeneracy accounts for the superadditive effect of lesions on functional deficits in terms of a “many-to-one” structure–function mapping. In this paper, we offer a principled account of degeneracy and redundancy, when function is operationalized in terms of active inference, namely, a formulation of perception and action as belief updating under generative models of the world. In brief, “degeneracy” is quantified by the “entropy” of posterior beliefs about the causes of sensations, while “redundancy” is the “complexity” cost incurred by forming those beliefs. From this perspective, degeneracy and redundancy are complementary: Active inference tries to minimize redundancy while maintaining degeneracy. This formulation is substantiated using statistical and mathematical notions of degenerate mappings and statistical efficiency. We then illustrate changes in degeneracy and redundancy during the learning of a word repetition task. Finally, we characterize the effects of lesions—to intrinsic and extrinsic connections—using in silico disconnections. These numerical analyses highlight the fundamental difference between degeneracy and redundancy—and how they score distinct imperatives for perceptual inference and structure learning that are relevant to synthetic and biological intelligence.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>32488244</pmid><doi>10.1093/cercor/bhaa148</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5108-5743</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-3211
ispartof Cerebral cortex (New York, N.Y. 1991), 2020-10, Vol.30 (11), p.5750-5766
issn 1047-3211
1460-2199
1460-2199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7899066
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Animals
Bayes Theorem
Brain - physiology
Humans
Models, Neurological
Original
title Degeneracy and Redundancy in Active Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degeneracy%20and%20Redundancy%20in%20Active%20Inference&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Sajid,%20Noor&rft.date=2020-10-01&rft.volume=30&rft.issue=11&rft.spage=5750&rft.epage=5766&rft.pages=5750-5766&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhaa148&rft_dat=%3Cproquest_pubme%3E2409195270%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409195270&rft_id=info:pmid/32488244&rft_oup_id=10.1093/cercor/bhaa148&rfr_iscdi=true