Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach

The hydrated electron has fundamental and practical significance in radiation and radical chemistry, catalysis, and radiobiology. While its bulk properties have been extensively studied, its behavior at solid/liquid interfaces is still unclear due to the lack of effective tools to characterize this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-10, Vol.142 (43), p.18619-18627
Hauptverfasser: Lapointe, François, Wolf, Martin, Campen, R. Kramer, Tong, Yujin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18627
container_issue 43
container_start_page 18619
container_title Journal of the American Chemical Society
container_volume 142
creator Lapointe, François
Wolf, Martin
Campen, R. Kramer
Tong, Yujin
description The hydrated electron has fundamental and practical significance in radiation and radical chemistry, catalysis, and radiobiology. While its bulk properties have been extensively studied, its behavior at solid/liquid interfaces is still unclear due to the lack of effective tools to characterize this short-lived species in between two condensed matter layers. In this study, we develop a novel optoelectronic technique for the characterization of the birth and structural evolution of solvated electrons at the metal/liquid interface with a femtosecond time resolution. Using this tool, we record for the first time the transient spectra (in a photon energy range from 0.31 to 1.85 eV) in situ with a time resolution of 50 fs revealing several novel aspects of their properties at the interface. Especially the transient species show state-dependent optical transition behaviors from being isotropic in the hot state to perpendicular to the surface in the trapped and solvated states. The technique will enable a better understanding of hot electron driven reactions at electrochemical interfaces.
doi_str_mv 10.1021/jacs.0c08289
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000582673500035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444603287</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-1ada9dfd2efa4945ee895392f0e45bda7929785f62cef6faae78d9b111af8bd93</originalsourceid><addsrcrecordid>eNqNkc1uEzEUhUcIRENhxwN4iQRpbc94xt4glVDaSpHKgorl6I593Tia2KntKcqOR8chURESCxb-k79zrq9PVb1l9IxRzs7XoNMZ1VRyqZ5VMyY4nQvG2-fVjFLK551s65PqVUrrcmy4ZC-rk5or0XRMzaqfX2MYnL8neYXkk4t5RcAbcjfmCBZSJp93HjZOJxIsud6ZCBkNuRxR5xh8IpB_K6_CaM6X7mFyhnwvSCQ3vswWNJJHB8WT3G5zwKPOaXKx3cYAevW6emFhTPjmuJ5Wd18uvy2u58vbq5vFxXIOtWrynIEBZazhaKFRjUCUStSKW4qNGAx0iqtOCttyjba1ANhJowbGGFg5GFWfVh8Pvttp2KDR6EuHY7-NbgNx1wdw_d833q36-_DYd0K1ZRSDd0eDGB4mTLnfuKRxHMFjmFLPm6Zpac1lV9APB1THkFJE-1SG0X4fWr8PrT-GVvD3B_wHDsEm7dBrfJKU1ITkbVeLsqtFoeX_0wuXIbvgF2Hy-U8L--rrMEVffvzfb_oFOte6vQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444603287</pqid></control><display><type>article</type><title>Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Lapointe, François ; Wolf, Martin ; Campen, R. Kramer ; Tong, Yujin</creator><creatorcontrib>Lapointe, François ; Wolf, Martin ; Campen, R. Kramer ; Tong, Yujin</creatorcontrib><description>The hydrated electron has fundamental and practical significance in radiation and radical chemistry, catalysis, and radiobiology. While its bulk properties have been extensively studied, its behavior at solid/liquid interfaces is still unclear due to the lack of effective tools to characterize this short-lived species in between two condensed matter layers. In this study, we develop a novel optoelectronic technique for the characterization of the birth and structural evolution of solvated electrons at the metal/liquid interface with a femtosecond time resolution. Using this tool, we record for the first time the transient spectra (in a photon energy range from 0.31 to 1.85 eV) in situ with a time resolution of 50 fs revealing several novel aspects of their properties at the interface. Especially the transient species show state-dependent optical transition behaviors from being isotropic in the hot state to perpendicular to the surface in the trapped and solvated states. The technique will enable a better understanding of hot electron driven reactions at electrochemical interfaces.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c08289</identifier><identifier>PMID: 32954719</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Journal of the American Chemical Society, 2020-10, Vol.142 (43), p.18619-18627</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000582673500035</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a394t-1ada9dfd2efa4945ee895392f0e45bda7929785f62cef6faae78d9b111af8bd93</citedby><cites>FETCH-LOGICAL-a394t-1ada9dfd2efa4945ee895392f0e45bda7929785f62cef6faae78d9b111af8bd93</cites><orcidid>0000-0002-7091-2991 ; 0000-0002-4084-7711 ; 0000-0002-5645-8745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c08289$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c08289$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,28253,56743,56793</link.rule.ids></links><search><creatorcontrib>Lapointe, François</creatorcontrib><creatorcontrib>Wolf, Martin</creatorcontrib><creatorcontrib>Campen, R. Kramer</creatorcontrib><creatorcontrib>Tong, Yujin</creatorcontrib><title>Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach</title><title>Journal of the American Chemical Society</title><addtitle>J AM CHEM SOC</addtitle><addtitle>J. Am. Chem. Soc</addtitle><description>The hydrated electron has fundamental and practical significance in radiation and radical chemistry, catalysis, and radiobiology. While its bulk properties have been extensively studied, its behavior at solid/liquid interfaces is still unclear due to the lack of effective tools to characterize this short-lived species in between two condensed matter layers. In this study, we develop a novel optoelectronic technique for the characterization of the birth and structural evolution of solvated electrons at the metal/liquid interface with a femtosecond time resolution. Using this tool, we record for the first time the transient spectra (in a photon energy range from 0.31 to 1.85 eV) in situ with a time resolution of 50 fs revealing several novel aspects of their properties at the interface. Especially the transient species show state-dependent optical transition behaviors from being isotropic in the hot state to perpendicular to the surface in the trapped and solvated states. The technique will enable a better understanding of hot electron driven reactions at electrochemical interfaces.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkc1uEzEUhUcIRENhxwN4iQRpbc94xt4glVDaSpHKgorl6I593Tia2KntKcqOR8chURESCxb-k79zrq9PVb1l9IxRzs7XoNMZ1VRyqZ5VMyY4nQvG2-fVjFLK551s65PqVUrrcmy4ZC-rk5or0XRMzaqfX2MYnL8neYXkk4t5RcAbcjfmCBZSJp93HjZOJxIsud6ZCBkNuRxR5xh8IpB_K6_CaM6X7mFyhnwvSCQ3vswWNJJHB8WT3G5zwKPOaXKx3cYAevW6emFhTPjmuJ5Wd18uvy2u58vbq5vFxXIOtWrynIEBZazhaKFRjUCUStSKW4qNGAx0iqtOCttyjba1ANhJowbGGFg5GFWfVh8Pvttp2KDR6EuHY7-NbgNx1wdw_d833q36-_DYd0K1ZRSDd0eDGB4mTLnfuKRxHMFjmFLPm6Zpac1lV9APB1THkFJE-1SG0X4fWr8PrT-GVvD3B_wHDsEm7dBrfJKU1ITkbVeLsqtFoeX_0wuXIbvgF2Hy-U8L--rrMEVffvzfb_oFOte6vQ</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Lapointe, François</creator><creator>Wolf, Martin</creator><creator>Campen, R. Kramer</creator><creator>Tong, Yujin</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7091-2991</orcidid><orcidid>https://orcid.org/0000-0002-4084-7711</orcidid><orcidid>https://orcid.org/0000-0002-5645-8745</orcidid></search><sort><creationdate>20201028</creationdate><title>Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach</title><author>Lapointe, François ; Wolf, Martin ; Campen, R. Kramer ; Tong, Yujin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-1ada9dfd2efa4945ee895392f0e45bda7929785f62cef6faae78d9b111af8bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapointe, François</creatorcontrib><creatorcontrib>Wolf, Martin</creatorcontrib><creatorcontrib>Campen, R. Kramer</creatorcontrib><creatorcontrib>Tong, Yujin</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapointe, François</au><au>Wolf, Martin</au><au>Campen, R. Kramer</au><au>Tong, Yujin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach</atitle><jtitle>Journal of the American Chemical Society</jtitle><stitle>J AM CHEM SOC</stitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-10-28</date><risdate>2020</risdate><volume>142</volume><issue>43</issue><spage>18619</spage><epage>18627</epage><pages>18619-18627</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The hydrated electron has fundamental and practical significance in radiation and radical chemistry, catalysis, and radiobiology. While its bulk properties have been extensively studied, its behavior at solid/liquid interfaces is still unclear due to the lack of effective tools to characterize this short-lived species in between two condensed matter layers. In this study, we develop a novel optoelectronic technique for the characterization of the birth and structural evolution of solvated electrons at the metal/liquid interface with a femtosecond time resolution. Using this tool, we record for the first time the transient spectra (in a photon energy range from 0.31 to 1.85 eV) in situ with a time resolution of 50 fs revealing several novel aspects of their properties at the interface. Especially the transient species show state-dependent optical transition behaviors from being isotropic in the hot state to perpendicular to the surface in the trapped and solvated states. The technique will enable a better understanding of hot electron driven reactions at electrochemical interfaces.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32954719</pmid><doi>10.1021/jacs.0c08289</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7091-2991</orcidid><orcidid>https://orcid.org/0000-0002-4084-7711</orcidid><orcidid>https://orcid.org/0000-0002-5645-8745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-10, Vol.142 (43), p.18619-18627
issn 0002-7863
1520-5126
language eng
recordid cdi_webofscience_primary_000582673500035
source ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Multidisciplinary
Physical Sciences
Science & Technology
title Probing the Birth and Ultrafast Dynamics of Hydrated Electrons at the Gold/Liquid Water Interface via an Optoelectronic Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Birth%20and%20Ultrafast%20Dynamics%20of%20Hydrated%20Electrons%20at%20the%20Gold/Liquid%20Water%20Interface%20via%20an%20Optoelectronic%20Approach&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Lapointe,%20Franc%CC%A7ois&rft.date=2020-10-28&rft.volume=142&rft.issue=43&rft.spage=18619&rft.epage=18627&rft.pages=18619-18627&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c08289&rft_dat=%3Cproquest_webof%3E2444603287%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444603287&rft_id=info:pmid/32954719&rfr_iscdi=true