High performance microchannel adsorption heat pumps
•Silica gel–water adsorption heat pump with adsorbent microchannels developed.•Microchannels minimize heat and mass transfer resistances.•Single microchannel governs process performance, enabling scalability.•COP of 0.22, SCC of 177 W kg−1 without heat recovery achieved.•Near-continuous cooling with...
Gespeichert in:
Veröffentlicht in: | International journal of refrigeration 2020-11, Vol.119, p.184-194 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | |
container_start_page | 184 |
container_title | International journal of refrigeration |
container_volume | 119 |
creator | Pahinkar, Darshan G. Boman, Daniel B. Garimella, Srinivas |
description | •Silica gel–water adsorption heat pump with adsorbent microchannels developed.•Microchannels minimize heat and mass transfer resistances.•Single microchannel governs process performance, enabling scalability.•COP of 0.22, SCC of 177 W kg−1 without heat recovery achieved.•Near-continuous cooling with single adsorbent bed.
Adsorbent-coated microchannels are used for the design of adsorption heat pumps, based on component-level fluid flow, heat and mass transfer modeling of a representative proof-of-concept unit with a cooling capacity of 300 W at 5 °C. Optimum channel geometry is determined using parametric studies. The use of adsorbent-coated microchannels results in operation with the heating time less than 10% of the total cycle time, opening the possibility for near continuous operation of the heat pump. Cyclic operation of the subject heat pump concept is simulated for the operating conditions used for silica gel-water chillers in the literature, and the results are used to document its benefits over those of existing designs. For a source temperature of 90 °C, cooling temperature of 35 °C, condenser inlet temperature of 42 °C, and evaporator outlet temperature of 5 °C, a Coefficient of Performance (COP) of 0.22 is attainable with a specific cooing capacity (SCC) of 177 W kg−1 without recovering any heat from the heating stage. COP > 0.55 and SCC ~1134 W kg−1 can be achieved for less severe operating conditions typically used in the literature. |
doi_str_mv | 10.1016/j.ijrefrig.2020.07.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000582337900018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140700720303224</els_id><sourcerecordid>2465481784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-4c7f132aee8d2d0691528ab7bebab486c78fa0accde920cce126ea831970593b3</originalsourceid><addsrcrecordid>eNqNkMFOhDAURRujiePoLxgSlwZ8LQwtOw1Rx2QSN7puSnnMlAwUW9D493aCutXV7eKe9vYQckkhoUDzmzYxrcPGmW3CgEECPAlxRBZU8CJmIOgxWQDNIOYA_JSced8CUA4rsSDp2mx30YCusa5TvcaoM9pZvVN9j_tI1d66YTS2j3aoxmiYusGfk5NG7T1efOeSvD7cv5TrePP8-FTebWKdZjDGmeYNTZlCFDWrIS_oiglV8QorVWUi11w0CpTWNRYMtEbKclQipUWYVqRVuiRX872Ds28T-lG2dnJ9eFKyLF9lgnKRhVY-t8Js74MIOTjTKfcpKciDINnKH0HyIEgClyECeD2DH1jZxmuD4fu_MEDww9KUF-FERWiL_7dLM6qDtNJO_RjQ2xnFIOvdoJPfeG0c6lHW1vy19QvSy5MT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465481784</pqid></control><display><type>article</type><title>High performance microchannel adsorption heat pumps</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>Pahinkar, Darshan G. ; Boman, Daniel B. ; Garimella, Srinivas</creator><creatorcontrib>Pahinkar, Darshan G. ; Boman, Daniel B. ; Garimella, Srinivas</creatorcontrib><description>•Silica gel–water adsorption heat pump with adsorbent microchannels developed.•Microchannels minimize heat and mass transfer resistances.•Single microchannel governs process performance, enabling scalability.•COP of 0.22, SCC of 177 W kg−1 without heat recovery achieved.•Near-continuous cooling with single adsorbent bed.
Adsorbent-coated microchannels are used for the design of adsorption heat pumps, based on component-level fluid flow, heat and mass transfer modeling of a representative proof-of-concept unit with a cooling capacity of 300 W at 5 °C. Optimum channel geometry is determined using parametric studies. The use of adsorbent-coated microchannels results in operation with the heating time less than 10% of the total cycle time, opening the possibility for near continuous operation of the heat pump. Cyclic operation of the subject heat pump concept is simulated for the operating conditions used for silica gel-water chillers in the literature, and the results are used to document its benefits over those of existing designs. For a source temperature of 90 °C, cooling temperature of 35 °C, condenser inlet temperature of 42 °C, and evaporator outlet temperature of 5 °C, a Coefficient of Performance (COP) of 0.22 is attainable with a specific cooing capacity (SCC) of 177 W kg−1 without recovering any heat from the heating stage. COP > 0.55 and SCC ~1134 W kg−1 can be achieved for less severe operating conditions typically used in the literature.</description><identifier>ISSN: 0140-7007</identifier><identifier>EISSN: 1879-2081</identifier><identifier>DOI: 10.1016/j.ijrefrig.2020.07.020</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Adsorbents ; Adsorption ; Chillers ; Computational fluid dynamics ; Cooling ; Cycle time ; Engineering ; Engineering, Mechanical ; Evaporators ; Fluid dynamics ; Fluid flow ; Froid ; Heat pump ; Heat pumps ; Heat transfer ; Heating ; Inlet temperature ; Mass transfer ; Microcanaux ; Microchannels ; Physical Sciences ; Pompe à chaleur ; Pumps ; Refrigeration ; Science & Technology ; Silica gel ; Silicon dioxide ; Technology ; Temperature ; Thermal cycling ; Thermodynamics</subject><ispartof>International journal of refrigeration, 2020-11, Vol.119, p.184-194</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000582337900018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c340t-4c7f132aee8d2d0691528ab7bebab486c78fa0accde920cce126ea831970593b3</citedby><cites>FETCH-LOGICAL-c340t-4c7f132aee8d2d0691528ab7bebab486c78fa0accde920cce126ea831970593b3</cites><orcidid>0000-0002-5697-4096 ; 0000-0002-6308-1421 ; 0000-0003-0438-8412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrefrig.2020.07.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,28255,46002</link.rule.ids></links><search><creatorcontrib>Pahinkar, Darshan G.</creatorcontrib><creatorcontrib>Boman, Daniel B.</creatorcontrib><creatorcontrib>Garimella, Srinivas</creatorcontrib><title>High performance microchannel adsorption heat pumps</title><title>International journal of refrigeration</title><addtitle>INT J REFRIG</addtitle><description>•Silica gel–water adsorption heat pump with adsorbent microchannels developed.•Microchannels minimize heat and mass transfer resistances.•Single microchannel governs process performance, enabling scalability.•COP of 0.22, SCC of 177 W kg−1 without heat recovery achieved.•Near-continuous cooling with single adsorbent bed.
Adsorbent-coated microchannels are used for the design of adsorption heat pumps, based on component-level fluid flow, heat and mass transfer modeling of a representative proof-of-concept unit with a cooling capacity of 300 W at 5 °C. Optimum channel geometry is determined using parametric studies. The use of adsorbent-coated microchannels results in operation with the heating time less than 10% of the total cycle time, opening the possibility for near continuous operation of the heat pump. Cyclic operation of the subject heat pump concept is simulated for the operating conditions used for silica gel-water chillers in the literature, and the results are used to document its benefits over those of existing designs. For a source temperature of 90 °C, cooling temperature of 35 °C, condenser inlet temperature of 42 °C, and evaporator outlet temperature of 5 °C, a Coefficient of Performance (COP) of 0.22 is attainable with a specific cooing capacity (SCC) of 177 W kg−1 without recovering any heat from the heating stage. COP > 0.55 and SCC ~1134 W kg−1 can be achieved for less severe operating conditions typically used in the literature.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Chillers</subject><subject>Computational fluid dynamics</subject><subject>Cooling</subject><subject>Cycle time</subject><subject>Engineering</subject><subject>Engineering, Mechanical</subject><subject>Evaporators</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Froid</subject><subject>Heat pump</subject><subject>Heat pumps</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Inlet temperature</subject><subject>Mass transfer</subject><subject>Microcanaux</subject><subject>Microchannels</subject><subject>Physical Sciences</subject><subject>Pompe à chaleur</subject><subject>Pumps</subject><subject>Refrigeration</subject><subject>Science & Technology</subject><subject>Silica gel</subject><subject>Silicon dioxide</subject><subject>Technology</subject><subject>Temperature</subject><subject>Thermal cycling</subject><subject>Thermodynamics</subject><issn>0140-7007</issn><issn>1879-2081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMFOhDAURRujiePoLxgSlwZ8LQwtOw1Rx2QSN7puSnnMlAwUW9D493aCutXV7eKe9vYQckkhoUDzmzYxrcPGmW3CgEECPAlxRBZU8CJmIOgxWQDNIOYA_JSced8CUA4rsSDp2mx30YCusa5TvcaoM9pZvVN9j_tI1d66YTS2j3aoxmiYusGfk5NG7T1efOeSvD7cv5TrePP8-FTebWKdZjDGmeYNTZlCFDWrIS_oiglV8QorVWUi11w0CpTWNRYMtEbKclQipUWYVqRVuiRX872Ds28T-lG2dnJ9eFKyLF9lgnKRhVY-t8Js74MIOTjTKfcpKciDINnKH0HyIEgClyECeD2DH1jZxmuD4fu_MEDww9KUF-FERWiL_7dLM6qDtNJO_RjQ2xnFIOvdoJPfeG0c6lHW1vy19QvSy5MT</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Pahinkar, Darshan G.</creator><creator>Boman, Daniel B.</creator><creator>Garimella, Srinivas</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-5697-4096</orcidid><orcidid>https://orcid.org/0000-0002-6308-1421</orcidid><orcidid>https://orcid.org/0000-0003-0438-8412</orcidid></search><sort><creationdate>202011</creationdate><title>High performance microchannel adsorption heat pumps</title><author>Pahinkar, Darshan G. ; Boman, Daniel B. ; Garimella, Srinivas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-4c7f132aee8d2d0691528ab7bebab486c78fa0accde920cce126ea831970593b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Chillers</topic><topic>Computational fluid dynamics</topic><topic>Cooling</topic><topic>Cycle time</topic><topic>Engineering</topic><topic>Engineering, Mechanical</topic><topic>Evaporators</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Froid</topic><topic>Heat pump</topic><topic>Heat pumps</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Inlet temperature</topic><topic>Mass transfer</topic><topic>Microcanaux</topic><topic>Microchannels</topic><topic>Physical Sciences</topic><topic>Pompe à chaleur</topic><topic>Pumps</topic><topic>Refrigeration</topic><topic>Science & Technology</topic><topic>Silica gel</topic><topic>Silicon dioxide</topic><topic>Technology</topic><topic>Temperature</topic><topic>Thermal cycling</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pahinkar, Darshan G.</creatorcontrib><creatorcontrib>Boman, Daniel B.</creatorcontrib><creatorcontrib>Garimella, Srinivas</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pahinkar, Darshan G.</au><au>Boman, Daniel B.</au><au>Garimella, Srinivas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High performance microchannel adsorption heat pumps</atitle><jtitle>International journal of refrigeration</jtitle><stitle>INT J REFRIG</stitle><date>2020-11</date><risdate>2020</risdate><volume>119</volume><spage>184</spage><epage>194</epage><pages>184-194</pages><issn>0140-7007</issn><eissn>1879-2081</eissn><abstract>•Silica gel–water adsorption heat pump with adsorbent microchannels developed.•Microchannels minimize heat and mass transfer resistances.•Single microchannel governs process performance, enabling scalability.•COP of 0.22, SCC of 177 W kg−1 without heat recovery achieved.•Near-continuous cooling with single adsorbent bed.
Adsorbent-coated microchannels are used for the design of adsorption heat pumps, based on component-level fluid flow, heat and mass transfer modeling of a representative proof-of-concept unit with a cooling capacity of 300 W at 5 °C. Optimum channel geometry is determined using parametric studies. The use of adsorbent-coated microchannels results in operation with the heating time less than 10% of the total cycle time, opening the possibility for near continuous operation of the heat pump. Cyclic operation of the subject heat pump concept is simulated for the operating conditions used for silica gel-water chillers in the literature, and the results are used to document its benefits over those of existing designs. For a source temperature of 90 °C, cooling temperature of 35 °C, condenser inlet temperature of 42 °C, and evaporator outlet temperature of 5 °C, a Coefficient of Performance (COP) of 0.22 is attainable with a specific cooing capacity (SCC) of 177 W kg−1 without recovering any heat from the heating stage. COP > 0.55 and SCC ~1134 W kg−1 can be achieved for less severe operating conditions typically used in the literature.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrefrig.2020.07.020</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5697-4096</orcidid><orcidid>https://orcid.org/0000-0002-6308-1421</orcidid><orcidid>https://orcid.org/0000-0003-0438-8412</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7007 |
ispartof | International journal of refrigeration, 2020-11, Vol.119, p.184-194 |
issn | 0140-7007 1879-2081 |
language | eng |
recordid | cdi_webofscience_primary_000582337900018 |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Adsorbents Adsorption Chillers Computational fluid dynamics Cooling Cycle time Engineering Engineering, Mechanical Evaporators Fluid dynamics Fluid flow Froid Heat pump Heat pumps Heat transfer Heating Inlet temperature Mass transfer Microcanaux Microchannels Physical Sciences Pompe à chaleur Pumps Refrigeration Science & Technology Silica gel Silicon dioxide Technology Temperature Thermal cycling Thermodynamics |
title | High performance microchannel adsorption heat pumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T20%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20performance%20microchannel%20adsorption%20heat%20pumps&rft.jtitle=International%20journal%20of%20refrigeration&rft.au=Pahinkar,%20Darshan%20G.&rft.date=2020-11&rft.volume=119&rft.spage=184&rft.epage=194&rft.pages=184-194&rft.issn=0140-7007&rft.eissn=1879-2081&rft_id=info:doi/10.1016/j.ijrefrig.2020.07.020&rft_dat=%3Cproquest_webof%3E2465481784%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465481784&rft_id=info:pmid/&rft_els_id=S0140700720303224&rfr_iscdi=true |