On the Optimal Control of a Malware Propagation Model

An important way considered to control malware epidemic processes is to take into account security measures that are associated to the systems of ordinary differential equations that governs the dynamics of such systems. We can observe two types of control measures: the analysis of the basic reprodu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-09, Vol.8 (9), p.1518
Hauptverfasser: Hernández Guillén, Jose Diamantino, Martín del Rey, Ángel, Casado Vara, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1518
container_title Mathematics (Basel)
container_volume 8
creator Hernández Guillén, Jose Diamantino
Martín del Rey, Ángel
Casado Vara, Roberto
description An important way considered to control malware epidemic processes is to take into account security measures that are associated to the systems of ordinary differential equations that governs the dynamics of such systems. We can observe two types of control measures: the analysis of the basic reproductive number and the study of control measure functions. The first one is taken at the beginning of the epidemic process and, therefore, we can consider this to be a prevention measure. The second one is taken during the epidemic process. In this work, we use the theory of optimal control that is associated to systems of ordinary equations in order to find a new function to control malware epidemic through time. Specifically, this approach is evaluate on a particular compartmental malware model that considers carrier devices.
doi_str_mv 10.3390/math8091518
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b22fffd112204e6a9a26ef3ba2144267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b22fffd112204e6a9a26ef3ba2144267</doaj_id><sourcerecordid>2441127436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ab56ce8920164a7007d0890b7bfc473cccbfeca69fde28ab03510a5fc7c137a83</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqT35BwIeZTVfm2yOUvwotNSDnsNLNmm3bDdrNkX8965WpO_yHsO8mWEQuqbkjnNN7veQtxXRtKTVGZowxlShRvz85L5Es2HYkXE05ZXQE1SuO5y3Hq_73OyhxfPY5RRbHAMGvIL2E5LHryn2sIHcxA6vYu3bK3QRoB387G9P0fvT49v8pViunxfzh2XhuBS5AFtK5yvNCJUCFCGqJpUmVtnghOLOORu8A6lD7VkFlvCSEiiDU45yBRWfosVRt46wM30aI6YvE6Exv0BMGwMpN671xjIWQqgpZYwIL0EDkz5wC4wKwaQatW6OWn2KHwc_ZLOLh9SN8Q0TYvxTgsuRdXtkuRSHIfnw70qJ-anZnNTMvwHyt24i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441127436</pqid></control><display><type>article</type><title>On the Optimal Control of a Malware Propagation Model</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hernández Guillén, Jose Diamantino ; Martín del Rey, Ángel ; Casado Vara, Roberto</creator><creatorcontrib>Hernández Guillén, Jose Diamantino ; Martín del Rey, Ángel ; Casado Vara, Roberto</creatorcontrib><description>An important way considered to control malware epidemic processes is to take into account security measures that are associated to the systems of ordinary differential equations that governs the dynamics of such systems. We can observe two types of control measures: the analysis of the basic reproductive number and the study of control measure functions. The first one is taken at the beginning of the epidemic process and, therefore, we can consider this to be a prevention measure. The second one is taken during the epidemic process. In this work, we use the theory of optimal control that is associated to systems of ordinary equations in order to find a new function to control malware epidemic through time. Specifically, this approach is evaluate on a particular compartmental malware model that considers carrier devices.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math8091518</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Control theory ; Differential equations ; Disease control ; epidemic model ; Epidemics ; Epidemiology ; Malware ; malware propagation ; Mathematical models ; Mathematics ; Optimal control ; Ordinary differential equations ; Propagation ; Variables</subject><ispartof>Mathematics (Basel), 2020-09, Vol.8 (9), p.1518</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ab56ce8920164a7007d0890b7bfc473cccbfeca69fde28ab03510a5fc7c137a83</citedby><cites>FETCH-LOGICAL-c364t-ab56ce8920164a7007d0890b7bfc473cccbfeca69fde28ab03510a5fc7c137a83</cites><orcidid>0000-0002-3600-0016 ; 0000-0003-0198-696X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Hernández Guillén, Jose Diamantino</creatorcontrib><creatorcontrib>Martín del Rey, Ángel</creatorcontrib><creatorcontrib>Casado Vara, Roberto</creatorcontrib><title>On the Optimal Control of a Malware Propagation Model</title><title>Mathematics (Basel)</title><description>An important way considered to control malware epidemic processes is to take into account security measures that are associated to the systems of ordinary differential equations that governs the dynamics of such systems. We can observe two types of control measures: the analysis of the basic reproductive number and the study of control measure functions. The first one is taken at the beginning of the epidemic process and, therefore, we can consider this to be a prevention measure. The second one is taken during the epidemic process. In this work, we use the theory of optimal control that is associated to systems of ordinary equations in order to find a new function to control malware epidemic through time. Specifically, this approach is evaluate on a particular compartmental malware model that considers carrier devices.</description><subject>Control theory</subject><subject>Differential equations</subject><subject>Disease control</subject><subject>epidemic model</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Malware</subject><subject>malware propagation</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Optimal control</subject><subject>Ordinary differential equations</subject><subject>Propagation</subject><subject>Variables</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqT35BwIeZTVfm2yOUvwotNSDnsNLNmm3bDdrNkX8965WpO_yHsO8mWEQuqbkjnNN7veQtxXRtKTVGZowxlShRvz85L5Es2HYkXE05ZXQE1SuO5y3Hq_73OyhxfPY5RRbHAMGvIL2E5LHryn2sIHcxA6vYu3bK3QRoB387G9P0fvT49v8pViunxfzh2XhuBS5AFtK5yvNCJUCFCGqJpUmVtnghOLOORu8A6lD7VkFlvCSEiiDU45yBRWfosVRt46wM30aI6YvE6Exv0BMGwMpN671xjIWQqgpZYwIL0EDkz5wC4wKwaQatW6OWn2KHwc_ZLOLh9SN8Q0TYvxTgsuRdXtkuRSHIfnw70qJ-anZnNTMvwHyt24i</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Hernández Guillén, Jose Diamantino</creator><creator>Martín del Rey, Ángel</creator><creator>Casado Vara, Roberto</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3600-0016</orcidid><orcidid>https://orcid.org/0000-0003-0198-696X</orcidid></search><sort><creationdate>20200901</creationdate><title>On the Optimal Control of a Malware Propagation Model</title><author>Hernández Guillén, Jose Diamantino ; Martín del Rey, Ángel ; Casado Vara, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ab56ce8920164a7007d0890b7bfc473cccbfeca69fde28ab03510a5fc7c137a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control theory</topic><topic>Differential equations</topic><topic>Disease control</topic><topic>epidemic model</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Malware</topic><topic>malware propagation</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Optimal control</topic><topic>Ordinary differential equations</topic><topic>Propagation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández Guillén, Jose Diamantino</creatorcontrib><creatorcontrib>Martín del Rey, Ángel</creatorcontrib><creatorcontrib>Casado Vara, Roberto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández Guillén, Jose Diamantino</au><au>Martín del Rey, Ángel</au><au>Casado Vara, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Optimal Control of a Malware Propagation Model</atitle><jtitle>Mathematics (Basel)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>8</volume><issue>9</issue><spage>1518</spage><pages>1518-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>An important way considered to control malware epidemic processes is to take into account security measures that are associated to the systems of ordinary differential equations that governs the dynamics of such systems. We can observe two types of control measures: the analysis of the basic reproductive number and the study of control measure functions. The first one is taken at the beginning of the epidemic process and, therefore, we can consider this to be a prevention measure. The second one is taken during the epidemic process. In this work, we use the theory of optimal control that is associated to systems of ordinary equations in order to find a new function to control malware epidemic through time. Specifically, this approach is evaluate on a particular compartmental malware model that considers carrier devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math8091518</doi><orcidid>https://orcid.org/0000-0002-3600-0016</orcidid><orcidid>https://orcid.org/0000-0003-0198-696X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2020-09, Vol.8 (9), p.1518
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b22fffd112204e6a9a26ef3ba2144267
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Control theory
Differential equations
Disease control
epidemic model
Epidemics
Epidemiology
Malware
malware propagation
Mathematical models
Mathematics
Optimal control
Ordinary differential equations
Propagation
Variables
title On the Optimal Control of a Malware Propagation Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Optimal%20Control%20of%20a%20Malware%20Propagation%20Model&rft.jtitle=Mathematics%20(Basel)&rft.au=Hern%C3%A1ndez%20Guill%C3%A9n,%20Jose%20Diamantino&rft.date=2020-09-01&rft.volume=8&rft.issue=9&rft.spage=1518&rft.pages=1518-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math8091518&rft_dat=%3Cproquest_doaj_%3E2441127436%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441127436&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_b22fffd112204e6a9a26ef3ba2144267&rfr_iscdi=true