Differentiation of gastric schwannomas from gastrointestinal stromal tumors by CT using machine learning
Objective To identify schwannomas from gastrointestinal stromal tumors (GISTs) by CT features using Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT). Methods This study enrolled 49 patients with schwannomas and 139 with GISTs proven by pat...
Gespeichert in:
Veröffentlicht in: | Abdominal imaging 2021-05, Vol.46 (5), p.1773-1782 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective
To identify schwannomas from gastrointestinal stromal tumors (GISTs) by CT features using Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT).
Methods
This study enrolled 49 patients with schwannomas and 139 with GISTs proven by pathology. CT features with
P
|
---|---|
ISSN: | 2366-004X 2366-0058 |
DOI: | 10.1007/s00261-020-02797-9 |