Differentiation of gastric schwannomas from gastrointestinal stromal tumors by CT using machine learning

Objective To identify schwannomas from gastrointestinal stromal tumors (GISTs) by CT features using Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT). Methods This study enrolled 49 patients with schwannomas and 139 with GISTs proven by pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abdominal imaging 2021-05, Vol.46 (5), p.1773-1782
Hauptverfasser: Wang, Jian, Xie, Zongyu, Zhu, Xiandi, Niu, Zhongfeng, Ji, Hongli, He, Linyang, Hu, Qiuxiang, Zhang, Cui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective To identify schwannomas from gastrointestinal stromal tumors (GISTs) by CT features using Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT). Methods This study enrolled 49 patients with schwannomas and 139 with GISTs proven by pathology. CT features with P  
ISSN:2366-004X
2366-0058
DOI:10.1007/s00261-020-02797-9